The new concentrations of
and
are 0.25M and 19M
Calculation of number of moles of each component,
Molarity of
= number of moles/volume in lit = 0. 500 M
Number of moles = molarity of
× volume in lit = 0. 500 M× 0.025 L
Number of moles of
= 0.0125 mole
Molarity of
= number of moles/volume in lit = 0. 38 M
Number of moles = molarity of
× volume in lit = 0. 38 M× 0.025 L
Number of moles of
= 0.95 mole
Calculation of new concentration at volume 50 ml ( 0.05L)
Molarity of
= number of moles/volume in lit = 0.0125 mole/0.05L
Molarity of
= 0.25M
Molarity of
= number of moles/volume in lit = 0.95mole/0.05L
Molarity of
= 19 M
learn about Molarity
brainly.com/question/8732513
#SPJ4
Answer:
13 mol NO
Explanation:
Step 1: Write the balanced equation
4 NH₃(g) + 5 O₂(g) ⇒ 4 NO(g) + 6 H₂O(g)
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to NO is 5:4.
Step 3: Calculate the number of moles of O₂ needed to produce 16 moles of NO
We will use the previously established molar ratio.
16 mol O₂ × 4 mol NO/5 mol O₂ = 13 mol NO
Answer:
True
Explanation:
The entropy of a system denoted by S is a thermodynamic function that increases in value when there are more ways to arrange the particles in the system. Some spontaneous chemical processes are entropy driven. An increase in entropy is said to drive the dissolution of ionic salts along with the evaporation of water are related to the spreading out of energy.
The entropy of a system can be taken as a measure of disorder of a system. In a spontaneous chemical process, the entropy of the universe is said to increase. ΔSunivu>0. Making the answer true.
Answer:
Ne
Explanation:
Noble gas, Unreactive therefore does not exist as a diatomic molecule