Answer:
Explanation:
According to legend, Galileo dropped weights off of the Leaning Tower of Pisa, showing that gravity causes objects of different masses to fall with the same acceleration. In recent years, researchers have taken to replicating this test in a way that the Italian scientist probably never envisioned — by dropping atoms. One of Galileo's contributions to the founding of modern science was his study of falling objects. He turned, then, to measuring the acceleration of objects rolling down smooth ramps. The ramp "diluted" the acceleration to a value small enough to allow accurate measurements of the longer time intervals.
Answer:
A polar bond is one where the charge distribution between the two atoms in the bond is unequal. A polar molecule is one where the charge distribution around the molecule is not symmetric. It results from having polar bonds and also a molecular structure where the bond polarities do not cancel.
Explanation:
Answer:
sorry to waste ur time but im getting points bc i have a question and i need more points to say ig
Answer:
B and C
Explanation:
When we have to do a buffer solution we always have to choose the reaction that has the <u>pKa closer to the desired pH value</u>. When we find the pKa values we will obtain:
![pKa_1=-Log[6.9x10^-^3]=2.16](https://tex.z-dn.net/?f=pKa_1%3D-Log%5B6.9x10%5E-%5E3%5D%3D2.16)
![pKa_2=-Log[6.2x10^-^8]=7.20](https://tex.z-dn.net/?f=pKa_2%3D-Log%5B6.2x10%5E-%5E8%5D%3D7.20)
![pKa_3=-Log[4.8x10^-^13]=12.31](https://tex.z-dn.net/?f=pKa_3%3D-Log%5B4.8x10%5E-%5E13%5D%3D12.31)
The closer value is pKa2 with a value of 7.2. Therefore we have to use the second reaction. In which
is the <u>acid</u> and
is the <u>base</u>. Therefore the answer for the first question is B and the answer for the second question is C.
Answer:
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Explanation:
<u>Step 1: </u>Data given
mass of water = 300 grams
initial temperature = 10°C
final temperature = 50°C
Temperature rise = 50 °C - 10 °C = 40 °C
Specific heat capacity of water = 4.184 J/g °C
<u>Step 2:</u> Calculate the heat
Q = m*c*ΔT
Q = 300 grams * 4.184 J/g °C * (50°C - 10 °C)
Q = 50208 Joule = 50.2 kJ
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C