Answer:

Explanation:
Hello,
Considering the ideal equation of state:

The moles are defined in terms of mass as follows:

Whereas
the gas' molar mass, thus:

Now, since the density is defined as the quotient between the mass and the volume, we get:

Solving for
:

Thus, the result is given by:
![density=\frac{(1atm)(44g/mol)}{[0.082atm*L/(mol*K)]*298.15K} \\density=1.8g/L=1.8x10^{-3}g/mL](https://tex.z-dn.net/?f=density%3D%5Cfrac%7B%281atm%29%2844g%2Fmol%29%7D%7B%5B0.082atm%2AL%2F%28mol%2AK%29%5D%2A298.15K%7D%20%5C%5Cdensity%3D1.8g%2FL%3D1.8x10%5E%7B-3%7Dg%2FmL)
Best regards.
Answer:
burning of wood ,cooking an egg,baking a cake,rusting of iron,digestion of food .
Answer:
D. It contains a phosphate with higher phosphoryl transfer potential than ATP
Explanation:
1,3-Bisphosphoglycerate contains a phosphate group that has high phosphoryl transfer potential than ATP (they can transfer the phosphoryl group to ATP). Other high phosphoryl transfer potential groups include :Creatine kinase and phosphoenolpyruvate.
Answer: New pressure inside the flask would be 148.8 kPa.
Explanation: The combined gas law equation is given by:

As the flask is a closed flask, so the volume remains constant. Temperature is constant also.
So, the relation between pressure and number of moles becomes



- Final conditions: When additional 3 puffs of air is added

Putting the values, in above equation, we get

[
] value of soft drink is 0.0001mol/l when given pH is 4.
Given:
pH = 4
Needs to find: [
]
Formula to find: pH=−log
[
]
We can put the values of pH in above formula as,
pH=−log
[
]
4 =−log
[
]
To calculate hydonium ion concentration, formula is as follows;
[
] = 
[
] =
= 0.0001mol/l
[
] value of soft drink is 0.0001mol/l
Learn more about pH here:
brainly.com/question/2288405
#SPJ4