Answer
Find out the how high up the wall does the ladder reach .
To proof
let us assume that the height of the wall be x .
As given
A 25-foot long ladder is propped against a wall at an angle of 18° .
as shown in the diagram given below
By using the trignometric identity

now
Base = wall height = x
Hypotenuse = 25 foot
Put in the trignometric identity


x = 23.8 foot ( approx)
Therefore the height of the ladder be 23.8 foot ( approx) .
<span>The answers to this problem are:<span>(<span>±5</span></span>√3/8,±5/8)<span>Here is the solution:
Step 1: <span><span><span>x2</span>+<span>y2</span>=<span>2516</span>[2]</span><span><span>x2</span>+<span>y2</span>=<span>2516</span>[2]</span></span>
Step 2: Substitute:<span>
</span><span><span>8<span><span>(<span>25/16</span>)^</span>2</span>=25(<span>x^2</span>−<span>y^2</span>)
</span><span>8<span><span>(<span>25/16</span>)^</span>2</span>=25(<span>x^2</span>−<span>y^2</span>)</span></span>
</span><span>x^2</span>−<span>y^2</span>=<span>25/32</span><span>.
Add [2] and [3]:<span>
</span><span>2<span>x^2</span>=<span>75/32
</span><span>x^2</span>=<span>75/74</span></span>
<span>x=±5</span></span>√3/8<span>
Substitute into [2]:<span>
</span><span><span>75/64</span>+<span>y^2</span>=<span>50/32
</span><span>y^2</span>=<span>25/64</span></span>
<span>y=±<span>5/8</span></span>
</span>
</span>
Answer:
the domain is 0 x 45 and the range is 0 h 360. The slope is -8, so the change in the height of the ballon is -8 feet per second. The h-intercept is 360, so the height of the ballon when the first noticed it was 360 feet. The x-intercept is 45, so the time it took the hot air balloon to reach the ground was 45 seconds.
Step-by-step explanation:
A minute has 60 seconds, therefore we will deal with seconds now
And since we have it that the biker travels 5 feet every 0.5 seconds, lets multiply that by 2 to get the traveled distance per second to make it easier
5*2=10
Finally, multiply 10 feet by 60 seconds(1 minute)
= 600 feet