Answer:
(-2,-1)
Step-by-step explanation:
On the graph, the vertex is where the bottom of the U is. In general, it's always that same place on the U, but the U could be turned upside down or left or right. Looking at the bottom of the U, count on the x axis first (left 2, which is negative). That's your first number. Then count on the y axis (down 1, again, negative). That's your second number. Hope this helps!
Okay, so, to find out if an equation has one solution, an infinite number of solutions, or no solutions, we must first solve the equation:
(a) 6x + 4x - 6 = 24 + 9x
First, combine the like-terms on both sides of the equal sign:
10x - 6 = 24 + 9x
Now, we need to get the numbers with the variable 'x,' on the same side, by subtracting, in this case:
10x - 6 = 24 + 9x
-9x. -9x
______________
X - 6 = 24
Now, we do the opposite of subtraction, and add 6 to both sides:
X - 6 = 24
+6 +6
_________
X = 30
So, this particular equation has one solution.
(a). One solution
_____________________________________________________
(b) 25 - 4x = 15 - 3x + 10 - x
Okay, so again, we combine the like-terms, on the same side of the equal sign:
25 - 4x = 25 - 2x
Now, we get the 2 numbers with the variable 'x,' to the same side of the equal sign:
25 - 4x = 25 - 2x
+ 2x + 2x
________________
25 - 2x = 25
Next, we do the opposite of addition, and, subtract 25 on each side:
25 - 2x = 25
-25 -25
___________
-2x = 0
Finally, because we can't divide 0 by -2, this tells us that this has an infinite number of solutions.
(b) An infinite number of solutions.
__________________________________________________
(c) 4x + 8 = 2x + 7 + 2x - 20
Again, we combine the like-terms, on the same side as the equal sign:
4x + 8 = 4x - 13
Now, we get the 'x' variables on the same side, again, and, we do that by doing the opposite of addition, which, is subtraction:
4x + 8 = 4x - 13
-4x -4x
______________
8 = -13
Finally, because there is no longer an 'x' or variable, we know that this equation has no solution.
(c) No Solution
_________________________________
I hope this helps!
Answer:
look up something called desmos and type in the equation
Step-by-step explanation: