1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fantom [35]
3 years ago
5

You have a 2m long wire which you will make into a thin coil with N loops to generate a magnetic field of 3mT when the current i

n the wire is 1.2A. What is the radius of the coils and how many loops, N, are there
Physics
1 answer:
Anni [7]3 years ago
8 0

Answer:

<em>radius of the loop =  7.9 mm</em>

<em>number of turns N ≅ 399 turns</em>

Explanation:

length of wire L= 2 m

field strength B = 3 mT = 0.003 T

current I = 12 A

recall that field strength B = μnI

where n is the turn per unit length

vacuum permeability μ  = 4\pi *10^{-7}  T-m/A = 1.256 x 10^-6 T-m/A

imputing values, we have

0.003 = 1.256 x 10^−6 x n x 12

0.003 = 1.507 x 10^-5 x n

n = 199.07 turns per unit length

for a length of 2 m,

number of loop N = 2 x 199.07 = 398.14 ≅ <em>399 turns</em>

since  there are approximately 399 turns formed by the 2 m length of wire, it means that each loop is formed by 2/399 = 0.005 m of the wire.

this length is also equal to the circumference of each loop

the circumference of each loop = 2\pi r

0.005 = 2 x 3.142 x r

r = 0.005/6.284 = 7.9*10^{-4} m = 0.0079 m =<em> 7.9 mm</em>

You might be interested in
What force is required to push a block (mass m) up an inclined plane that makes an angle of θ with the horizon at a constant vel
Verizon [17]

Answer:

b. mg ( μ · cos θ + sin θ)

Explanation:

Hi there!

Please, see the attached figure for a graphical description of the problem.

We have the following parallel forces acting on the block (in parallel direction to the direction of movement):

F = applied force.

Fr = friction force.

wx = parallel component of the weight.

According to Newton´s second law:

∑F = m · a

Where "m" is the mass of the block and "a" its acceleration.

Then:

F - Fr - wx = m · a

Since the block is to be pushed at a constant velocity, the acceleration is zero. Then:

F - Fr - wx = 0

F = Fr + wx

The applied force has to be equal to the friction force plus the parallel component of the weight to push the block at constant velocity.

The friction force is calculated as follows:

Fr = μ · N

Where N is the normal force and μ is the coefficient of friction.

Notice that the normal force is of the same magnitude as the perpendicular component of the weight, wy.

Let´s apply Newton´s second law in the perpendicular direction to show this:

∑F = m · a

N - wy = m · a

The acceleration of the block in the perpendicular direction is zero. Then:

N - wy = 0

N = wy

And wy can be obtained by trigonometry (see figure):

wy = W · cos θ

N = wy = mg ·  cos θ

The parallel component of the weight is calculated using trigonometry (see figure):

wx = W · sin θ

wx = mg · sin θ

Then the applied force will be:

F = Fr + wx

F = μ · N + mg · sin θ      (N = wy = mg ·  cos θ)

F = μ · mg ·  cos θ  + mg · sin θ

F = mg ( μ · cos θ + sin θ)

The correct answer is the b.

8 0
2 years ago
Two parallel plates that are initially uncharged are separated by 1.7 mm, have only air between them, and each have surface area
yaroslaw [1]

Answer:

5.63\cdot 10^{-6} C

Explanation:

The capacitor of a parallel-plate capacitor is given by:

C=\epsilon_0 \frac{A}{d}

where

A is the area of each plate

d is the separation between the plates

\epsilon_0 is the vacuum permittivity

The energy stored in a capacitor instead is given by

U=\frac{1}{2}\frac{Q^2}{C}

where

Q is the charge stored in each plate

Substituting the expression we found for C inside the last formula,

U=\frac{1}{2}\frac{Q^2 d}{\epsilon_0 A}

And re-arranging it

Q=\sqrt{\frac{2U\epsilon_0 A}{d}}

Now if we substitute

d=1.7 mm=0.0017 m\\A=16 cm^2 = 16\cdot 10^{-4} m^2\\U = 1.9 J

We find the charge stored on the capacitor:

Q=\sqrt{\frac{2(1.9)(8.85\cdot 10^{-12})(16\cdot 10^{-4})}{0.0017}}=5.63\cdot 10^{-6} C

7 0
3 years ago
What is the wavelength of the wave
sladkih [1.3K]

Explanation:

it is equal to the speed (v) of a wave train in a medium divided by its frequency (f): λ = v/f. Waves of different wavelengths.

8 0
3 years ago
Read 2 more answers
How much heat do you need to raise the temperature of 150 g of oxygen from -30c to -15c?
Naddika [18.5K]
The amount of heat needed to raise the temperature of a substance by \Delta T is given by
Q=m C_s \Delta T
where
m is the mass of the substance
Cs is its specific heat capacity
\Delta T is the increase in temperature

For oxygen, the specific heat capacity is approximately 
C_s = 0.92 J/(g K)
The variation of temperature for the sample in our problem is 
\Delta T= -15^{\circ}C-(-30^{\circ} C)=+15^{\circ}C=15 K
while the mass is m=150 g, so the amount of heat needed is
Q=m C_s \Delta T=(150 g)(0.92 J/g K)(15 K)=2070 J
4 0
3 years ago
Read 2 more answers
Calculate the temperature of the air mass when it has risen to a level at which atmospheric pressure is only 8.00×104 Pa . Assum
cestrela7 [59]

Answer:

T_{2}=278.80 K

Explanation:

Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.

(\frac{V_{1}}{V_{2}})^{\gamma -1} = \frac{T_{2}}{T_{1}}.

Now, let's use the ideal gas equation to the initial and the final state:

\frac{p_{1} V_{1}}{T_{1}} = \frac{p_{2} V_{2}}{T_{2}}

Let's recall that the term nR is a constant. That is why we can match these equations.  

We can find a relation between the volumes of the initial and the final state.

\frac{V_{1}}{V_{2}}=\frac{T_{1}p_{2}}{T_{2}p_{1}}

Combining this equation with the first equation we have:

(\frac{T_{1}p_{2}}{T_{2}p_{1}})^{\gamma -1} = \frac{T_{2}}{T_{1}}

(\frac{p_{2}}{p_{1}})^{\gamma -1} = \frac{T_{2}^{\gamma}}{T_{1}^{\gamma}}

Now, we just need to solve this equation for T₂.

T_{1}\cdot (\frac{p_{2}}{p_{1}})^{\frac{\gamma - 1}{\gamma}} = T_{2}

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.

Here,

p_{2}=8.00\cdot 10^{4} Pa \\p_{1}=1.01\cdot 10^{5} Pa\\ T_{1}=298 K\\ \gamma=1.40

Finally, T2 will be:

T_{2}=278.80 K

6 0
3 years ago
Other questions:
  • What is water that travels across land that may pick up substances called
    10·2 answers
  • A light plane is headed due south with a speed of 200 km/h relative to still air. After 1.00 hour, the pilot notices that they h
    8·1 answer
  • The method of heat transfer that takes place in liquids and gases is?<br> need the answer ASAP!!
    6·1 answer
  • An electron of mass 9.11*10-31kg has an initial speed of 3.00*105m/s. It travels in a straight line and its speed increases to 7
    9·1 answer
  • Using a horizontal force of 200N,we intend to move a wooden cabinet across a floor at constant velocity.What is the friction for
    10·1 answer
  • An invalid argument with one true premise, one false premise, and a true conclusion.
    5·1 answer
  • How is sun related to nuclear, electromagnetic, and heat energy?
    8·2 answers
  • Can someone pls give me the answer?
    10·1 answer
  • A track athlete does two and a half laps from the starting line on a track of normal shape and size. The best way to describe th
    14·1 answer
  • Nhận xét về nét riêng trong cách thể hiện tình yêu của xuân quỳnh qua 3 khổ thTrong thí nghiệm về giao thoa sóng trên mặt nước g
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!