The amplitude of a wave corresponds to its maximum oscillation of the wave itself.
In our problem, the equation of the wave is
![y(x,t)= (0.750cm)cos(\pi [(0.400cm-1)x+(250s-1)t])](https://tex.z-dn.net/?f=y%28x%2Ct%29%3D%20%280.750cm%29cos%28%5Cpi%20%5B%280.400cm-1%29x%2B%28250s-1%29t%5D%29)
We can see that the maximum value of y(x,t) is reached when the cosine is equal to 1. When this condition occurs,

and therefore this value corresponds to the amplitude of the wave.
No air conditioning, I already don’t have it, I only have heating :(
The height of the roof is <u>3.57m</u>
Let the drops fall at a rate of 1 drop per t seconds. The first drop takes 5t seconds to reach the ground. The second drop takes 4t seconds to reach the bottom of the 1.00 m window, while the 3rd drop takes 3t s to reach the top of the window.
Calculate the distances traveled by the second and the third drops s₂ and s₃, which start from rest from the roof of the building.

The length of the window s is given by,

The first drop is at the bottom and it takes 5t seconds to reach down.
The height of the roof h is the distance traveled by the first drop and is given by,

the height of the roof is 3.57 m
Answer:
La frecuencia cardíaca objetivo durante las actividades de intensidad moderada es aproximadamente del 50 al 70% de la frecuencia cardíaca máxima, mientras que durante la actividad física intensa es de, aproximadamente, entre el 70 y el 85% del valor máximo.
Answer: 3.49 s
Explanation:
We can solve this problem with the following equation of motion:
(1)
Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity (the ball was dropped)
is the acceleratio due gravity
is the time
Isolating
:
(2)
(3)
Finally we find the time the ball is in the air:
(4)