Answer:
7.5 cm
Explanation:
In the figure we can see a sketch of the problem. We know that at the bottom of the U-shaped tube the pressure is equal in both branches. Defining
Ethyl alcohol density and
Glycerin density , we can write:

Simplifying:

On the other hand:

Rearranging:

Replacing (2) in (1):

Rearranging:

Data:



Please be determined and being hardworking person do not rely on the other people to make your problems solved
Explanation:
Ok?
Answer:
0.8712 m/s²
Explanation:
We are given;
Velocity of first car; v1 = 33 m/s
Distance; d = 2.5 km = 2500 m
Acceleration of first car; a1 = 0 m/s² (constant acceleration)
Velocity of second car; v2 = 0 m/s (since the second car starts from rest)
From Newton's equation of motion, we know that;
d = ut + ½at²
Thus,for first car, we have;
d = v1•t + ½(a1)t²
Plugging in the relevant values, we have;
d = 33t + 0
d = 33t
For second car, we have;
d = v2•t + ½(a2)•t²
Plugging in the relevant values, we have;
d = 0 + ½(a2)t²
d = ½(a2)t²
Since they meet at the next exit, then;
33t = ½(a2)t²
simplifying to get;
33 = ½(a2)t
Now, we also know that;
t = distance/speed = d/v1 = 2500/33
Thus;
33 = ½ × (a2) × (2500/33)
Rearranging, we have;
a2 = (33 × 33 × 2)/2500
a2 = 0.8712 m/s²
Answer:
Angular speed ω=3771.4 rad/min
Revolution=5921 rpm
Explanation:
Given data

To find
Angular speed ω
Revolution per minute N
Solution
First we need to convert the speed of truck to inches per mile
as
1 mile=63360 inches
1 hour=60 minutes
so

Now to solve for angular speed ω by substituting the speed v and radius r in below equation

To solve for N(revolutions per minute) by substituting the angular speed ω in the following equation
Simple machines could be used to reduce effort or extend the ability of people to perform tasks beyond their normal capabilities.
Examples include pulley, lever, and incline plane