1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
6

f a single circular loop of wire carries a current of 45 A and produces a magnetic field at its center with a magnitude of 1.50

10-4 T, determine the radius of the loop.
Physics
1 answer:
Lelu [443]3 years ago
4 0

Answer:

Radius of the loop is 0.18 m or 18 cm

Explanation:

Given :

Current flowing through the wire, I = 45 A

Magnetic field at the center of the wire, B = 1.50 x 10⁻⁴ T

Number of turns in circular wire, N = 1

Consider R be the radius of the circular wire.

The magnetic field at the center of the current carrying circular wire is determine by the relation:

B=\frac{N\mu_{0} I}{2R}

Here μ₀ is vacuum permeability constant and its value is 4π x 10⁻⁷ Tm/A.

Substitute the suitable values in the above equation.

1.50\times10^{-4} =\frac{4\pi \times10^{-7}\times45 }{2R}

R = 0.18 m

You might be interested in
Glycerin is poured into an open U-shaped tube until the height in both sides is 20cm. Ethyl alcohol is then poured into one arm
Liula [17]

Answer:

7.5 cm

Explanation:

In the figure we can see a sketch of the problem. We know that at the bottom of the U-shaped tube the pressure is equal in both branches. Defining \rho_A: Ethyl alcohol density and \rho_G: Glycerin density , we can write:

\rho_A\times g \times h_1 + \rho_G \times g \times h_2 = \rho_G \times g \times h_3

Simplifying:

\rho_A\times h_1 = \rho_G \times (h_3 - h_2) (1)

On the other hand:

h_1 + h_2 = \Delta h + h_3

Rearranging:

h_1 - \Delta h = h_3 - h_2 (2)

Replacing  (2) in (1):

\rho_A\times h_1 = \rho_G \times (h_1 - \Delta h)

Rearranging:

\frac{h_1 \times (\rho_A - \rho_G)}{- \rho_G} = \Delta h

Data:

h_1 = 20 cm; \rho_A = 0.789 \frac{g}{cm^3}; \rho_G = 1.26 \frac{g}{cm^3}

\frac{20 cm \times (0.789 - 1.26) \frac{g}{cm^3}}{- 1.26\frac{g}{cm^3}}  = \Delta h

7.5 cm =  \Delta h

7 0
3 years ago
The answer please? I have exam tomo
makkiz [27]

Please be determined and being hardworking person do not rely on the other people to make your problems solved

Explanation:

Ok?

5 0
3 years ago
A car is traveling at a constant speed of 33 m/s on a highway. At the instant this car passes an entrance ramp, a second car ent
Paha777 [63]

Answer:

0.8712 m/s²

Explanation:

We are given;

Velocity of first car; v1 = 33 m/s

Distance; d = 2.5 km = 2500 m

Acceleration of first car; a1 = 0 m/s² (constant acceleration)

Velocity of second car; v2 = 0 m/s (since the second car starts from rest)

From Newton's equation of motion, we know that;

d = ut + ½at²

Thus,for first car, we have;

d = v1•t + ½(a1)t²

Plugging in the relevant values, we have;

d = 33t + 0

d = 33t

For second car, we have;

d = v2•t + ½(a2)•t²

Plugging in the relevant values, we have;

d = 0 + ½(a2)t²

d = ½(a2)t²

Since they meet at the next exit, then;

33t = ½(a2)t²

simplifying to get;

33 = ½(a2)t

Now, we also know that;

t = distance/speed = d/v1 = 2500/33

Thus;

33 = ½ × (a2) × (2500/33)

Rearranging, we have;

a2 = (33 × 33 × 2)/2500

a2 = 0.8712 m/s²

3 0
3 years ago
A truck with 28-in.-diameter wheels is traveling at 50 mi/h. Find the angular speed of the wheels in rad/min, *hint convert mile
solong [7]

Answer:

Angular speed ω=3771.4 rad/min

Revolution=5921 rpm

Explanation:

Given data

d=28in\\r=d/2=28/2=14in\\v=50mi/hr

To find

Angular speed ω

Revolution per minute N

Solution

First we need to convert the speed of truck to inches per mile

as

1 mile=63360 inches

1 hour=60 minutes

so

v=(50*\frac{63360}{60} )\\v=52800in/min

Now to solve for angular speed ω by substituting the speed v and radius r in below equation

w=\frac{v}{r}\\ w=\frac{52800in/min}{14in}\\ w=3771.4rad/min

To solve for N(revolutions per minute) by substituting the angular speed ω in the following equation

N=\frac{w}{2\pi }\\ N=\frac{3771.4rad/min}{2\pi }\\ N=5921RPM  

3 0
3 years ago
Write any two uses of simple machines.
Nana76 [90]
Simple machines could be used to reduce effort or extend the ability of people to perform tasks beyond their normal capabilities.
Examples include pulley, lever, and incline plane
4 0
3 years ago
Other questions:
  • Whats quantum physics?
    10·1 answer
  • Which of the following forms of light can be observed with telescopes at sea level?Select all that apply.Select all that apply.X
    7·1 answer
  • What is it called when something doesn’t flow easy
    8·1 answer
  • If two stars have the same absolute magnitude, what can be a reason for the difference in their brightness?
    5·1 answer
  • A 13,500 kg railroad freight car travels on a level track at a speed of 4.5 m/s. It collided and coupled with a 25,000 kg second
    8·1 answer
  • A small 18 kilogram canoe is floating downriver at a speed of 1 m/s. What is the canoe's kinetic energy?
    13·1 answer
  • You are throwing a stone straight-up in the absence of air friction. The stone is caught at the same height from which it was th
    8·1 answer
  • With what tension must a rope with length 3.00 mm and mass 0.105 kgkg be stretched for transverse waves of frequency 40.0 HzHz t
    15·1 answer
  • Fill in the graph for 50 points
    11·2 answers
  • When a satellite is in orbit around the Earth, the force of the gravity on the satellite is...
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!