Iron nails are attracted to the magnet
22. a - (vf^2 - vi^2)/(2d)
a = (0 - 23^2)/(170)
a = -3.1 m/s^2
23. Find the time (t) to reach 33 m/s at 3 m/s^2
33-0/t = 3
33 = 3t
t = 11 sec to reach 33 m/s^2
Find the av velocuty: 33+0/2 = 16.5 m/s
Dist = 16.5 * 11 = 181.5 meters to each 33m/s speed. Runway has to be at least this long.
24. The sprinter starts from rest. The average acceleration is found from:
(Vf)^2 = (Vi)^2 = 2as ---> a = (Vf)^2 - (Vi)^2/2s = (11.5m/s)^2-0/2(15.0m) = 4.408m/s^2 estimated: 4.41m/s^2
The elapsed time is found by solving
Vf = Vi + at ----> t = vf-vi/a = 11.5m/s-0/4.408m/s^2 = 2.61s
25. Acceleration of car = v-u/t = 0ms^-1-21.0ms^-1/6.00s = -3.50ms^-2
S = v^2 - u^2/2a = (0ms^-1)^2-(21.0ms^-1)^2/2*-3.50ms^-2 = 63.0m
26. Assuming a constant deceleration of 7.00 m/s^2
final velocity, v = 0m/s
acceleration, a = -7.00m/s^2
displacement, s - 92m
Using v^2 = u^2 - 2as
0^2 - u^2 + 2 (-7.00) (92)
initial velocity, u = sqrt (1288) = 35.9 m/s
This is the speed pf the car just bore braking.
I hope this helps!!
Answer:
The density of the metal is 5200 kg/m³.
Explanation:
Given that,
Weight in air= 0.10400 N
Weight in water = 0.08400 N
We need to calculate the density of metal
Let
be the density of metal and
be the density of water is 1000kg/m³.
V is volume of solid.
The weight of metal in air is



.....(I)
The weight of metal in water is
Using buoyancy force


We know that,
....(I)
Put the value of
in equation (I)

Put the value of Vg in equation (II)



Hence, The density of the metal is 5200 kg/m³.
There are 60 seconds in a minute.
This means that 5 minutes would be 60 times 5.
60×5 = 300
There are 300 seconds in 5 minutes.
Answer:
B
Explanation:
Absolute advantage is the capability of a commercial entity to produce goods using fewer resources compared to rivals. Using the same inputs, an entity with an absolute advantage produces a larger output compared to competitors. It means the firm has a lower marginal cost of production. Therefore, its products will have the lowest prices in the market.