The lord of the greeks answer d
Answer:
I believe it's sound energy.
Explanation:
Sound can move through air, whereas electric and radiant energy don't have to.
Answer:
B. 0.16 m
Explanation:
The vertical distance by which the player will miss the target is equal to the vertical distance covered by the dart during its motion.
Since the dart is thrown horizontally, the initial vertical velocity is zero:

While the horizontal velocity is

The horizontal distance covered is

Since the dart moves by uniform motion along the horizontal direction, the time it takes for covering this distance is

along the vertical direction, the motion is a uniformly accelerated motion with constant downward acceleration g=9.8 m/s^2, so the vertical distance covered is given by

The photoelectric effect is obtained when you shine a light on a material, resulting in the emission of electrons.
The kinetic energy of the electrons depends on the frequency of the light:
K = h(f - f₀)
where:
K = kinetic energy
h = Planck constant
f = light frequency
f₀ = threshold frequency
Rearranging the formula in the form y = m·x + b, we get:
K = hf - hf₀
where:
K = dependent variable
f = <span>indipendent variable
h = slope
hf</span>₀ = y-intercept
Every material has its own threshold frequency, therefore, what stays constant for all the materials is h = Planck constant (see picture attached).
Hence, the correct answer is
C) the slope.
Answer:
Part a: When the road is level, the minimum stopping sight distance is 563.36 ft.
Part b: When the road has a maximum grade of 4%, the minimum stopping sight distance is 528.19 ft.
Explanation:
Part a
When Road is Level
The stopping sight distance is given as

Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is this case is 0 as the road is level
Substituting values

So the minimum stopping sight distance is 563.36 ft.
Part b
When Road has a maximum grade of 4%
The stopping sight distance is given as

Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is given as 4% now this can be either downgrade or upgrade
For upgrade of 4%, Substituting values

<em>So the minimum stopping sight distance for a road with 4% upgrade is 528.19 ft.</em>
For downgrade of 4%, Substituting values

<em>So the minimum stopping sight distance for a road with 4% downgrade is 607.59 ft.</em>
As the minimum distance is required for the 4% grade road, so the solution is 528.19 ft.