The answer is c. because all of the other answers arne tpossible due to where they graphed it
Answer:
Step-by-step explanation:
Limit refers to the value that the function approaches as the input approaches some value.
We say
, if f(x) approaches L as x approaches 'a'.
(a)



(b)


What is the first quartile in this data set? 67, 68, 69, 70, 70, 70, 72, 73, 73, 75, 75
NARA [144]
<em> </em><em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>✌</em><em>✌</em><em>✌</em>
Answer:
66
Step-by-step explanation: