Answer:
I. They come from sources across space
II. They travel in a straight line from their source.
III. They can be reflected by some types of material.
Explanation:
Light wave can be defined as an electromagnetic wave that do not require a medium of propagation for it to travel through a vacuum of space where no particles exist.
The following statements about light waves are true;
I. They come from sources across space.
II. They travel in a straight line from their source.
III. They can be reflected by some types of material. reflection occurs when a ray of light or wavefronts bounces off a smooth surface. Thus, when light hit a surface, it bounces back to the medium from which it was originally propagated with.
However, light waves cannot travel through all type of material except materials that are transparent or translucent but not opaque.
Answer:
Vf₂ = 2 Vf₁
It shows that final speed of Joe is twice the final speed of Jim.
Explanation:
First, we analyze the final speed of Jim by using first equation of motion:
Vf₁ = Vi + at
where,
Vf₁ = final speed of Jim
Vi = initial speed of Jim = 0 m/s
a = acceleration of Jim
t = time of acceleration for Jim
Therefore,
Vf₁ = at ---------------- equation (1)
Now, we see the final speed of Joe. For Joe the parameters will become:
Vf = Vf₂
Vi = 0 m/s
a = a
t = 2t
Therefore,
Vf₂ = 2at
using equation (1):
<u>Vf₂ = 2 Vf₁</u>
<u>It shows that final speed of Joe is twice the final speed of Jim.</u>
<em>Answer:</em>
<em>Velocity is vector quantity.So it needs direction in addition to speed.</em>
<em>Explanation:</em>
<em>The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of its speed and direction of motion. </em>
Missing figure: find it in attachment.
Answer:
Force D
Explanation:
In order to answer the question, let's keep in mind that the force of gravity on an object on Earth is the attractive force exerted by the Earth on the object; its direction is always downward (towards the Earth's centre), and its magnitude is given by
F = mg
where m is the mass of the object and g is the acceleration of gravity.
It follows immediately that in the figure, the force of gravity is the only force acting downward: therefore, force D.
The other forces are called:
Force A: thrust (it is the forward force generated by the engines)
Force B: lift (it is the upward produced by the aerodynamics of the wings)
Force C: air resistance (it is the backward force due to the friction between the air and the surface of the plane)