A gas with a vapor density greater than that of air, would be most effectively displaced out off a vessel by ventilation.
The two following principles determine the type of ventilation: Considering the impact of the contaminant's vapour density and either positive or negative pressure is applied.
Consider a vertical tank that is filled with methane gas. Methane would leak out if we opened the top hatch since its vapour density is far lower than that of air. A second opening could be built at the bottom to greatly increase the process' efficiency.
A faster atmospheric turnover would follow from air being pulled in via the bottom while the methane was vented out the top. The rate of natural ventilation will increase with the difference in vapour density. Numerous gases that require ventilation are either present in fairly low concentrations or have vapor densities close to one.
Explanation:
elements are based on electrical conductivity
Answer:
- <em><u>Option A. </u></em><u><em>2KClO₃ → 2KCl + 3O₂</em></u>
Explanation:
There are five basic general types of chemical reactions:
- Synthesis or combination reaction
- Single replacement reactions
- Double replacement reactions
The given reactions are:
- <u>2KClO₃ → 2KCl + 3O₂</u>
Which is, indeed, a decomposition reaction because the reactant, KClO₃, is a single substance that undergoes a reaction in which it yields two new substances, known as products: KCl and O₂.
- <u>4Na + O₂ → 2Na₂O</u> is a synthesis or combination reaction because two reactants, Na and O₂, combine for the formation of one single new product, Na₂O.
- <u>ZnS + 3 O₂ → 2ZnO + 2SO₂ </u>is a single replacement reaction because oxygen is replacing Zn and S in ZnS to form ZnO and plus SO₂.
- <u>2NaBr + CaF₂ → 2NaF + CaBr₂ </u>is a double replacement reaction because two ions (Br⁻ from NaBr and F⁻ from CaF₂) are exchanging places with other two ions (Na⁺ from NaBr and Ca²⁺ from CaF₂) two form two new ionic compounds (NaF and CaBr₂).