True since ithave same number of electrons and protons
The answer for this multiple choice question is C
Answer:
6.142 moles of NaCl
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2AlCl3 + 3Na2S —> Al2S3 + 6NaCl
Next, we determine the number of mole in 239.7 g of Na2S. This is illustrated below:
Mass mass of Na2S = 78.048g/mol
Mass of Na2S = 239.7g
Number of mole Na2S =..?
Mole = Mass /Molar Mass
Number of mole Na2S = 239.7/78.048 = 3.071 moles
Finally, we can obtain the number of mole of NaCl produced from the reaction as follow:
From the balanced equation above,
3 moles of Na2S reacted to produce 6 moles of NaCl.
Therefore, 3.071 moles of Na2S will react to produce = (3.071 x 6)/3 = 6.142 moles of NaCl
Answer:
Explanation:
Given parameters:
pH = 3.50
Unknown:
concentration of [H₃0⁺] = ?
concentration of [OH⁻] = ?
Solution:
In order to find the unknown, we use some simple expressions which best explains the pH scale and the equilibrium systems of aqueous solutions.
pH = -log₁₀[H₃O⁺]
[H₃O⁺] = inverse log₁₀ (-pH) =
= 
[H₃O⁺] = 3.2 x 10⁻⁴moldm⁻³
For the [OH⁻]:
we use : pOH = -log₁₀ [OH⁻]
Recall: pOH + pH = 14
pOH = 14 - pH = 14 - 3.5 = 10.5
Now we plug the value of pOH into pOH = -log₁₀ [OH⁻]
[OH⁻] = 
[OH⁻] =
= 3.2 x 10⁻¹¹moldm⁻³
The solution is acidic as the concentration of H₃0⁺ is more than that of the OH⁻ ions.
Answer:
The temperatures of the objects must be different
Explanation:
if heat is flowing between two objects, then the objects must be at different temperatures.