<span>The answer is (2) 0.50 Hz. The frequency (f) of oscillation is the number of oscillations (n) per time (t) in seconds: f = n/t. A duck floating on a lake oscillates up and down 5.0 times (n = 5.0) during a 10.-second interval (t = 10.0 s). So, the frequency of duck's oscillations is: f = 5.0/10.0 s = 0.50 1/s = 0.50 Hz.Hope I helped! :) Cheers!</span>
That only the best traits would go through. The weaker trait in the animals would eventually die off.
The average velocity can be calculated using the formula:
v = d / t
For the 1st car, the velocity is calculated
as:
v1 = 8.60 m / 1.80 s = 4.78 m / s
While that of the 2nd car is:
v2 = 8.60 m / 1.66 s = 5.18 m / s
Now we can solve for the acceleration using the formula:
v2^2 = v1^2 + 2 a d
Rewriting in terms of a:
a = (v2^2 – v1^2) / 2 d
a = (5.18^2 – 4.78^2) / (2 * 8.6)
a = 0.23 m/s
Therefore the train has a constant acceleration of about
0.23 meters per second.
Answer:
A basketball sitting still in a players hands
Explanation:
The other 3 answers have the ball <u>in motion</u> (going towards the basket, bouncing, and rolling) so that would be <u>kinetic energy</u>.
When the basketball is sitting in the player's hands, it has the potential to be in motion.
Answer:
The smallest value is n= 2
Explanation:
The balmer equation is given below
1/λ = R(1/4 - 1/n₂²).
R= 1.0973731568508 × 10^7 m^-1
λ= 400*10^-9 m
(400*10^-9)= 1.0973731568508 × 10^7 (1/4-1/n²)
(400*10^-9)/1.0973731568508 × 10^7
= 1/4 - 1/n²
364.51 *10^-16= 1/4 - 1/n²
1/n²= 1/4 -364.51 *10^-16
1/n² = 0.25-3.6451*10^-14
1/0.25= n²
4= n²
√4= n
2= n
The smallest value is N= 2