Molarity and molality both describe the concentration of a substance in terms of moles.
Molarity describes the number of moles of a substance per unit of volume, typically per liter (mol/l).
Molality describes the number of moles per unit of mass, typically kilograms (mol/kg).
When determining the molality of a solution, mol/kg can be obtained by finding the number of moles in the substance, and dividing that number by the the total weight in kilograms of that substance.
When determining the molarity of a solution, mol/l can be obtained by dividing the number of moles in a substance by the total volume in liters of that substance.
Answer:
it's because some versions have more steps and others have less
Answer:
charge on each
Q1 = 2.06 ×
C
Q2 = 7.23 ×
C
when force were attractive
Q1 = 1.07 ×
C
Q2 = -1.39 ×
C
Explanation:
given data
total charge = 93.0 μC
apart distance r = 1.14 m
force exerted F = 10.3 N
to find out
What is the charge on each and What if the force were attractive
solution
we know that force is repulsive mean both sphere have same charge
so total charge on two non conducting sphere is
Q1 + Q2 = 93.0 μC = 93 ×
C
and
According to Coulomb's law force between two sphere is
Force F =
.........1
Q1Q2 = 
here F is force and r is apart distance and k is 9 ×
N-m²/C² put all value we get
Q1Q2 = 
Q1Q2 = 1.49 ×
C²
and
we have Q2 = 93 ×
C - Q1
put here value
Q1² - 93 ×
Q1 + 1.49 ×
= 0
solve we get
Q1 = 2.06 ×
C
and
Q1Q2 = 1.49 ×
2.06 ×
Q2 = 1.49 ×
Q2 = 7.23 ×
C
and
if force is attractive we get here
Q1Q2 = - 1.49 ×
C²
then
Q1² - 93 ×
Q1 - 1.49 ×
= 0
we get here
Q1 = 1.07 ×
C
and
Q1Q2 = - 1.49 ×
2.06 ×
Q2 = - 1.49 × 
Q2 = -1.39 ×
C
A spontaneous reaction is a term that is best describe to a type of reaction wherein it is started without even with the help of an outside force. In addition to that, this kind of reaction is commonly driven by the forces of enthalpy and entropy which are essential concepts to thermodynamics.
The momentum of block B afterwards is
.
Explanation:
We can solve this problem by applying the principle of conservation of momentum.
In fact, the total momentum before and after the collision must be conserved. Therefore, we can write:

where:
is the initial momentum of block A
is the initial momentum of block B
is the final momentum of block A
is the final momentum of block B
Solving for
, we find:

So, the momentum of block B afterwards is
.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly