In this case we know the three sides of the triangle, then this is a SSS triangle (Side Side Side). To solve this case, first we must use the Law of Cosines, applied to the opposite side to the angle we want to find.
We want to find angle W, and its opposite side is XV, then we apply the Law of Cosines to the side XV:
XV^2=XW^2+WV^2-2(XW)(WV)cos W
Replacing the known values:
116^2=96^2+89^2-2(96)(89)cos W
Solving for W
13,456=9,216+7,921-17,088 cos W
13,456=17,137-17,088 cos W
13,456-17,137=17,137-17,088 cos W-17,137
-3,681=-17,088 cos W
(-3,681)/(-17,088)=(-17,088 cos W)/(-17,088)
0.215414326=cos W
cos W = 0.215414326
Solving for W:
W= cos^(-1) 0.215414326
Using the calculator:
W=77.56016397°
Rounded to one decimal place:
W=77.6°
Answer: Third option 77.6°
Answer: A^2
Step-by-step explanation:
Angle C + Angle B = Angle A
It equal 12 have a nice day
Answer:
PQ = 3.58, and RQ = 10.4
Step-by-step explanation:
We are given the hypotenuse of the triangle, and an angle. Use sin and cos to solve.
Hypotenuse = 11,
Opposite side is PQ
Adjacent side is RQ
x = 19
Sin x = (opposite side)/(hypotenuse)
Cos x = (adjacent side)/(hypotenuse)
For PQ, this is the side opposite to the angle, so use sin,
Sin 19 = x/11
11(Sin 19) = x
3.58 = x (rounded to the nearest hundredth)
For RQ, this is the side adjacent to the angle, so use cos,
Cos 19 = x/11
11(Cos 19) = x
10.4 = x (rounded to the nearest hundredth)