Answer:
The kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Explanation:
Given;
initial velocity of proton,
= 3 x 10⁵ m/s
distance moved by the proton, d = 3.5 m
electric field strength, E = 120 N/C
The kinetic energy of the proton at the end of the motion is calculated as follows.
Consider work-energy theorem;
W = ΔK.E

where;
K.Ef is the final kinetic energy
W is work done in moving the proton = F x d = (EQ) x d = EQd




Therefore, the kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Answer:
n = 1.4266
Explanation:
Given that:
refractive index of crystalline slab n = 1.665
let refractive index of fluid is n.
angle of incidence θ₁ = 37.0°
Critical angle 

According to Snell's law of refraction:

At point P ; 

Therefore:

Then maximum value of refractive index n of the fluid is:


n = 1.4266
Answer:
Thermodynamics is usually defined as a branch of physics that deals with the study of the heat and various form of energy, and their interaction between the.
The first law says that heat appears as energy, and it cannot be produced and also cannot be demolished. It can only change from one form to another. This signifies that the total amount of energy present in the universe remains constant.
This first law can be mathematically represented as:
ΔU = Q - W
where ΔU = Changes occurring in the internal energy
Q = amount of heat added to the system
W = Amount of work done by the system