Answer:
About 3.88 meters per second
Explanation:
14km= 14,000m
14,000m per hour
so 14,000 ÷ 60= 233.33 meters per minute
233.33÷60=3.88 meters per second
Answer:

Explanation:
We are asked to find the mass of a cabinet, given the force and acceleration. According to Newton's Second Law of Motion, force is the product of mass and acceleration. The formula for this is:

The force is 200 Newtons, but we should convert the units to make unit cancellation easier. 1 Newton is equal to 1 kilogram meter per second squared, so the force of 200 Newtons is 200 kilogram meters per second squared.
The mass is unknown and the acceleration is 4 meters per second per second or 4 meters per second squared.
Substitute the values into the formula.

We are solving for the mass, m, so we must isolate the variable. It is being multiplied by 4 meters per second squared. The inverse operation of multiplication is division. Divide both sides by 4 m/s²


The units of meters per second squared cancel.


The mass of the cabinet is <u>50 kilograms.</u>
-- The potential energy of a 12-lb bowling ball up on the shelf
doesn't have anything to do with the temperature of the ball or
the shelf.
-- The potential energy of a jar full of gas does depend on the
temperature of the gas. The warmer it is, the greater its pressure
is, and the more work it can do if you let it out through a little hole
in the jar. If it gets hot enough, it'll have enough potential energy
to blow the jar to smithereens.
Answer:
The shearing stress is 10208.3333 Pa
The shearing strain is 0.25
The shear modulus is 40833.3332 Pa
Explanation:
Given:
Block of gelatin of 120 mm x 120 mm by 40 mm
F = force = 49 N
Displacement = 10 mm
Questions: Find the shear modulus, Sm = ?, shearing stress, Ss = ?, shearing strain, SS = ?
The shearing stress is defined as the force applied to the block over the projected area, first, it is necessary to calculate the area:
A = 40*120 = 4800 mm² = 0.0048 m²
The shearing stress:

The shearing strain is defined as the tangent of the displacement that the block over its length:

Finally, the shear modulus is the division of the shearing stress over the shearing strain:

Answer:
b-testing
Explanation:
First would be observation/research. Then the hypothesis. After that you would test your theory, conduct experiments. And finally, your conclusion- what you got from the whole process basically.
Hope this helps.