The angular momentum of a rotation object is the product of its moment of inertia and its angular velocity:
L = Iω
L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.
Apply the conservation of angular momentum. The total angular momentum before disks A and B are joined is:
L_{before} = (3.3)(6.6) + B(-9.3)
L_{before} = -9.3B+21.78
where B is the moment of inertia of disk B.
The total angular momentum after the disks are joined is:
L_{after} = (3.3+B)(-2.1)
L_{after} = -2.1B-6.93
L_{before} = L_{after}
-9.3B + 21.78 = -2.1B - 6.93
B = 4.0kg·m²
The moment of inertia of disk B is 4.0kg·m²
Hi there!
We know that:
U (Potential energy) = mgh
We are given the potential energy, so we can rearrange to solve for h (height):
U/mg = h
g = 9.81 m/s²
m = 30 g ⇒ 0.03 kg
0.062/(0.03 · 9.81) = 0.211 m
Answer:
ac = 124.6 m/s²
Explanation:
When an object executes a uniform circular motion, acceleration is produced in it due to a change in its direction during the motion. This acceleration is called the centripetal acceleration. The formula used to find this acceleration is given as follows:

where,
ac = centripetal acceleration = ?
v = speed = 9 m/s
r = radius = 0.65 m
Therefore,

<u>ac = 124.6 m/s²</u>
Answer:
Explanation:
A plane flies due north (90° from east) with a velocity of 100 km/h for 2 hours.
With no wind, it will be 100*2 = 200 km north of its starting point.
But a steady wind blows southeast at 30 km/h at an angle of 315° from due east.
So the wind itself will blow the plane 30*2 = 60km at an angle of 315° from due east.
That is the same as 60*cos315° = 42.43km due east and 60*sin315° = -42.43km north.
Combining, the plane is at 42.43km due east and 200-42.43 = 157.57km due north from its starting point.