Answer:
14869817.395 m
Explanation:
=22 microarcsecond
λ = Wavelength = 1.3 mm
Converting to radians we get

From Rayleigh Criterion

Diameter of the effective primary objective is 14869817.395 m
It is not possible to build one telescope with a diameter of 14869817.395 m. But, we need this type of telescope. So, astronomers use an array of radio telescopes to achieve a virtual diameter in order to observe objects that are the size of supermassive black hole's event horizon.
Answer:
B. w=12.68rad/s
C. α=3.52rad/s^2
Explanation:
B)
We can solve this problem by taking into account that (as in the uniformly accelerated motion)
( 1 )
where w0 is the initial angular speed, α is the angular acceleration, s is the arc length and r is the radius.
In this case s=3.7m, r=16.2cm=0.162m, t=3.6s and w0=0. Hence, by using the equations (1) we have


to calculate the angular speed w we can use
Thus, wf=12.68rad/s
C) We can use our result in B)

I hope this is useful for you
regards
Static charge occurs when there is an imbalance of positively and negatively charged atoms, so this one should be the last option that it involves ions as well.
Hope this helps :)
The spring constant is 66.7 N/m
Explanation:
First of all, we have to find the magnitude of the force acting on the spring. This is equal to the weight of the mass hanging on the spring, which is:

where:
m = 0.50 kg is the mass of the object
is the acceleration of gravity
Substituting,

Now we can use Hookes' law to find the constant of the spring:

where
F is the force applied
k is the spring constant
x is the stretching of the spring
Here we have:
F = 5 N
While the stretching is
x = 0.075 m
Therefore, ignoring the negative sign in the formula (which only tells us the direction), we find the spring constant:

#LearnwithBrainly