Answer:

Explanation:
Given

Required
Rewrite using scientific notation
The format of a number in scientific notation is

Where 
So the given parameter can be rewritten as

Express as a power of 10

Hence, the equivalent of the mass of the sun in scientific notation is:

You can calculate potential energy by:
U = m.g.h
Where, U = potential energy
m = mass
g = acceleration due to gravity
h = height
Hope this helps!
Image from a far away object formed by a concave mirror
I have no idea but this is my best guess as a sophomore in college
Answer:
Normal, Gravity, Friction, and Air Resistance.
Explanation:
When a moving car skid to stop and its wheels are locked across, then the following forces will be applied on the car:
<u>Normal force:</u> It will act counter to gravity that pushes an object against a surface and acts perpendicular to the contact surface.
<u>Gravity:</u> Gravity force acts in each and every object having mass and it can not be avoidable. So, the gravity force will also apply to the car and attract it to the earth's surface.
<u>Friction: </u>Friction is a force that acts opposite to the motion and stops or slows motion. Friction will be applied to the car that will oppose the motion of the car and stop it.
<u>Air resistance:</u> air resistance is defined as the forces exerted by air that acts opposite to the relative motion of an object. Air resistance will also be applied to the car when it will skid to stop as we are always surrounded by the air.
Hence, the correct answers are "Normal, Gravity, Friction, and Air Resistance."
6. Since we are not sure if the person in the question is actively lifting the crate, we have to determine the downwards force of the crate due to gravity and compare it to the normal force.
F = ma
F = (15.3)(-9.8)
F = -150N
Since the downwards force of the crate is equivalent to the normal force, it means the person is applying no force in picking up the object. So to pick up a 150N object from scratch, you would have to exert more force than the weight of the object, so the answer is 294N.
7. Same idea as question 2.
First determine the weight of the object:
F = ma
F = (30)(-9.8)
F = -294N
The crate in question is not moving, so the magnitudes of the forces in the upwards and downwards direction has to equal to 0.
-294 + 150N + x = 0
x = 144N
So the person is exerting 144 N.
10. First find the force of block B to the right due to its acceleration:
F = ma
F = (24)(0.5)
F = 12N
So block B is moving 12N to the right relative to block A due to block A's movement to the left. However, block A is being applied a much greater force and is moving quicker to the left than block B is moving to the right of bock A. The force that is causing block B to experience the lower relative force to the right is because of the friction. To find the friction:
The sum of the forces in the leftward and rightward direction for block B must equal 12N.
75 - x = 12
x = 63N
So the force of friction of block A on block B is 63N to the left.