The electric potential V(z) on the z-axis is : V = 
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
<u>Given data :</u>
V(z) =2kQ / a²(v(a² + z²) ) -z
<h3>Determine the electric potential V(z) on the z axis and magnitude of the electric field</h3>
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV
----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = 
V = ![\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%5Calpha%20%5B%20%28a%5E2%2Bz%5E2%29%5E%5Cfrac%7B1%7D%7B2%7D%20-z%20%5D)
= ![\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%20%28%5Cfrac%7BQ%7D%7B%5Cpi%20%5Calpha%20%5E2%7D%29%5B%28a%5E2%20%2Bz%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20-z%20%5D)
Therefore the electric potential V(z) = 
Also
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : brainly.com/question/25923373
Negative energy by catching it. Changes the force and movement of the baseball. Loses energy. Kinetic energy
Answer:
3.536*10^-6 C
Explanation:
The magnitude of the charge is expresses as Q = CV
C is the capacitance of the capacitor
V is the voltage across the capacitor
Get the capacitance
C = ε0A/d
ε0 is the permittivity of the dielectric = 8.84 x 10-12 F/m
A is the area = 0.2m²
d is the plate separation = 0.1mm = 0.0001m
Substitute
C = 8.84 x 10-12 * 0.2/0.0001
C = 1.768 x 10-8 F
Get the potential difference V
Using the formula for Electric field intensity
E = V/d
2.0 × 10^6 = V/0.0001
V = 2.0 × 10^6 * 0.0001
V = 2.0 × 10^2V
Get the charge on each plate.
Q = CV
Q = 1.768 x 10-8 * 2.0 × 10^2
Q = 3.536*10^-6 C
Hence the magnitude of the charge on each plate should be 3.536*10^-6 C
Answer:
Explanation:
Given
object of mass m is suspended from spring and set in oscillation with time Period T
We know Time period of a mass in oscillation is given by

where k=spring constant
When mass m is replaced by a mass of 2 m time period is given by



i.e. New time period becomes
times of previous one