Answer:
look at explanation
Explanation:
If heat rises, then why is it so cold at the top of a mountain? Heat does indeed rise. More specifically, a mass of air that is warmer than the air around it expands, becomes less dense, and will therefore float atop the cooler air. ... So when warm air rises, it cools off.
The marbles that are 'more energetic' fall out of the tray, in the same way particles have enough energy to escape and turn into a gas.
Answer:
To share a positive experience she had with a pen pal
Explanation:
Just read the story :)
The work done by the three students is 3,000 J.
The energy transferred in the process is 3,000 J.
<h3>What is work done?</h3>
- Work done is the product of force and distance moved by the object.
W = Fd
The work done by the three students is calculated as follows;
W = 300 x 10
W = 3,000 J
<h3>What is energy transfer?</h3>
- This is means by which energy is converted from one form to another.
The energy transferred in the process is determined by work energy theorem.
E = W
E = 3,000 J
Learn more about work-energy theorem here: brainly.com/question/22236101
This is a question on conservation of energy. That is,
mgh + KE1 = KE2
mgh +1/2mv1^2 = 1/2mv2^2
gh + 1/2v1^2 = 1/2v2^2
Where, h = 0.2 m, v1 =3.04 m/s
Therefore,
v2 = Sqrt [2(gh+1/2v1^2)] = Sqrt [2(9.81*0.2 + 1/2*3.04^2)] = 7.26 m/s
Now, Volumetric flow rate, V/time, t = Surface area, A*velocity, v
Where,
V = Av = πD^2/4*3.04 = π*(2.51/100)^2*1/4*3.04 = 1.504*10^-3 m^3/s
At 0.2 m below,
V = 1.504*10^-3 m^3/s = A*7.26
A = (1.504*10^-3)/7.26 = 2.072*10^-4 m^2
But, A = πr^2
Then,
r = Sqrt (A/π) = Sqrt (2.072*10^-4/π) = 0.121*10^-3 m
Diameter = 2r = 0.0162 m = 1.62 cm