Answer:
The final temperature of the gas is <em>114.53°C</em>.
Explanation:
Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:
ΔU=Q - W
ΔU = 1180 J - 2020 J = -840 J
Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:


Then we make the final temperature, T₂, subject of the formula:



Therefore the final temperature of the gas, T₂, is 114.53°C.
The wave speed to this question is 400 meters
Answer:
<em>The magnitude of vector d is 16 and the angle with the x-axis is 270°</em>
Explanation:
<u>Operations With Vectors</u>
Given two vectors in rectangular components:

The sum of the vectors is:

The difference between the vectors is:

The magnitude of
is:

The angle
makes with the horizontal positive direction is:

The question provides the vectors:



Calculate:

The magnitude of
is:

The angle is calculated by:

The division cannot be calculated because the denominator is zero. We need to estimate the correct angle by looking at the components of the vector. Since the x-coordinate is zero and the y-coordinate is negative, the vector points downwards (south), thus the angle must be -90° or 270° if the range goes from 0° to 360°.
The magnitude of vector d is 16 and the angle with the x-axis is 270°
The Correct Answer is <u>D.Infrared/</u> <em>INFARED has a lower frequency than visible light/</em>