Answer:
so in a given orbital there can be 3 electrons.
Explanation:
The Pauli exclusion principle states that all the quantum numbers of an electron cannot be equal, if the spatial part of the wave function is the same, the spin part of the wave function determines how many electrons fit in each orbital.
In the case of having two values, two electrons change. In the case of three allowed values, one electron fits for each value, so in a given orbital there can be 3 electrons.
Cumulus and cumulonimbus<span />
<h2>Answer: Light waves have a redshift due to the Doppler effect
</h2>
The astronomer Edwin Powell Hubble observed several celestial bodies, and when obtaining the spectra of distant galaxies he observed the spectral lines were displaced towards the red (red shift), whereas the nearby galaxies showed a spectrum displaced to the blue.
From there, Hubble deduced that the farther the galaxy is, the more redshifted it is in its spectrum. <u>The same happens with the stars and this phenomenom is known as the Doppler effect.
</u>
This phenomenon refers to the change in a wave perceived frequency (or wavelength=color) when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other. For example, as a star moves away from the Earth, its espectrum turns towards the red.
Answer:
Fc = 1.7x10^-4 N
Explanation:
Convert everything to proper units:
m = 25mg = 2.5x10^-5 kg
r = 17.6cm = 0.176m
v = 110cm/s = 1.1m/s
the formula for centripetal force is Fc = mv^2 / r
Plug everything and solve for Fc;
fc = (2.5x10^-5)(1.1^2) / 0.176
Fc = 1.7x10^-4 N