The magnitude of the current in wire 3 is 2.4 A and in a direction pointing in the downward direction.
- The force per unit length between two parallel thin current-carrying
and
wires at distance ' r ' is given by
....(1) .
- If the current is flowing in both wires in the same direction, and the force between them will be the attractive force and if the current is flowing in opposite direction in wires then the force between them will be the repulsive force.
A schematic of the information provided in the question can be seen in the image attached below.
From the image, force on wire 2 due to wire 1 = force on wire 2 due to wire 3

Using equation (1) , we get

I₃ = 2.4 A and the current is pointing in the downward direction
Learn more about the magnitude and direction of forces here:
brainly.com/question/14879801?referrer=searchResults
#SPJ4
Answer:
13.23J
Explanation:
PE = m*g*h
PE = (3 kg ) * (9.8 m/s/s) * (0.45 m)
Answer:
a) 
b) 
Explanation:
Given:
height of water in one arm of the u-tube, 
a)
Gauge pressure at the water-mercury interface,:

we've the density of the water 


b)
Now the same pressure is balanced by the mercury column in the other arm of the tube:



<u>Now the difference in the column is :</u>



Answer:
Light refracts when its speed changes as it enters a new medium.
Explanation:
Bending of light wave while it entering a medium with different speed is called refraction of light. Light passing from a faster medium to the slower medium bends the light rays toward the normal to boundary between two media. The amount of the bending of light depends on refractive index of the two media which is described by the Snell's Law. The angle of incidence is not equal to angle of refraction. Rainbow is caused but this refraction phenomena. Also Refraction is used in magnifying glasses, prism and lenses
Answer:
No
Explanation:
The fastest recorded time for a person to run 100 metres is 9.58 seconds, which is the equivalent of 10.4 metres per second