The answer is C) <span>The higher frequencies of visible light were scattered by the colloid particles.</span>
Answer:
true
Explanation:
if there is no light it's different from when there is
Answer:
The electric potential is approximately 5.8 V
The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero
Explanation:
The two protons can be considered as point charges. Therefore, the electric potential is given by the point charge potential:
(1)
where
is the charge of the particle,
the electric permittivity of the vacuum (I assuming the two protons are in a vacuum) and
is the distance from the point charge to the point where the potential is being measured. Because the electric potential is an scalar, we can simply add the contribution of the two potentials in the midpoint between the protons. Thus:

Substituting the values
,
and
we obtain:

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero.
Answer:
what do you mean by this?
Explanation:
Answer:
Approximately
.
Explanation:
Since the result needs to be accurate to three significant figures, keep at least four significant figures in the calculations.
Look up the Rydberg constant for hydrogen:
.
Look up the speed of light in vacuum:
.
Look up Planck's constant:
.
Apply the Rydberg formula to find the wavelength
(in vacuum) of the photon in question:
.
The frequency of that photon would be:
.
Combine this expression with the Rydberg formula to find the frequency of this photon:
.
Apply the Einstein-Planck equation to find the energy of this photon:
.
(Rounded to three significant figures.)