Answer:
Explanation:
These include the 6010, 6011, 6012, 6013, 7014, 7024 and 7018 electrodes. 6010 electrodes deliver deep penetration and have the ability to “dig” through rust, oil, paint or dirt, making them popular among pipe welders.
Answer:
a) benzene = 910 days
b) toluene = 1612.67 days
Explanation:
Given:
Kd = 1.8 L/kg (benzene)
Kd = 3.3 L/kg (toluene)
psolid = solids density = 2.6 kg/L
K = 2.9x10⁻⁵m/s
pores = n = 0.37
water table = 0.4 m
ground water = 15 m
u = K/n = (2.9x10⁻⁵ * (0.4/15)) / 0.37 = 2.09x10⁻⁶m/s
a) For benzene:
The time will take will be:
b) For toluene:
Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.