Answer:
230.51 m
Explanation:
Pb = 695 mmHg
Pt = 675 mmHg
Pb - Pt = 20 mmHg
Calculate dP:
dP = p * g * H = (13600)*(9.81)*(20/1000) = 2668.320 Pa
Calculate Height of building as dP is same for any medium of liquid
dP = p*g*H = 2668.320
H = 2668.32 / (1.18 * 9.81) = 230.51 m
Answer:
As a worker, it is important to follow the proper set of instructions or emergency plans during an emergent situation. Not carefully following the rules may result to a bigger problem such as further injury and damage to property.
Explanation:
Evacuation Procedure- This is a step-by-step procedure that people follow in order to safely vacate any building or place. This procedure is applicable to any situation, such as the workplace. This is now called the <em>Workplace Evacuation Procedure. </em>This is very important because there are so many unpredictable situations or events that are happening in the world right now, such as fire or earthquake. This procedure is being done through an evacuation plan.
The awareness of the workers regarding the proper way to evacuate during emergency situation is very important. It will be easier for them to know where to locate the nearest exit route. They will also learn to stop any form of device or equipment that could cause a hazzard during the situation. In case of the hospital, which is also a workplace, the employees will also learn how to assist the patients before themselves. They will also know where to assemble if there's a need to do so.
Answer:
<em>The temperature will be greater than 25°C</em>
Explanation:
In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.
mathematically
Change in the internal energy of a system ΔU = ΔQ + ΔW
in an adiabatic process, ΔQ = 0
therefore
ΔU = ΔW
where ΔQ is the change in heat into the system
ΔW is the work done by or done on the system
when work is done on the system, it is conventionally negative, and vice versa.
also W = pΔv
where p is the pressure, and
Δv = change in volume of the system.
In this case,<em> work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C </em>