<span>Simplifying
-15x2 + -2x + 8 = 0
Reorder the terms:
8 + -2x + -15x2 = 0
Solving
8 + -2x + -15x2 = 0
Solving for variable 'x'.
Factor a trinomial.
(2 + -3x)(4 + 5x) = 0
Subproblem 1Set the factor '(2 + -3x)' equal to zero and attempt to solve:
Simplifying
2 + -3x = 0
Solving
2 + -3x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-2' to each side of the equation.
2 + -2 + -3x = 0 + -2
Combine like terms: 2 + -2 = 0
0 + -3x = 0 + -2
-3x = 0 + -2
Combine like terms: 0 + -2 = -2
-3x = -2
Divide each side by '-3'.
x = 0.6666666667
Simplifying
x = 0.6666666667
Subproblem 2
Set the factor '(4 + 5x)' equal to zero and attempt to solve:
Simplifying
4 + 5x = 0
Solving
4 + 5x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-4' to each side of the equation.
4 + -4 + 5x = 0 + -4
Combine like terms: 4 + -4 = 0
0 + 5x = 0 + -4
5x = 0 + -4
Combine like terms: 0 + -4 = -4
5x = -4
Divide each side by '5'.
x = -0.8
Simplifying
x = -0.8
Solutionx = {0.6666666667, -0.8}</span>
Answer: C. 6
Step-by-step explanation:
Given : Time taken by Machine R to do the job = 36 hours
Time taken by Machine S to do the job = 18 hours
Let x be the number of each type of machine to do the job.
Then , according to the question the required equation will be :-

Hence, the number of machines of type R were used =6
Y=76 x-18
should be the anwer.
Answer:
Step-by-step explanation:
Directions
- Draw a circle
- Dear a chord with a length of 24 inside the circle. You just have to label it as 24
- Draw a radius that is perpendicular and a bisector through the chord
- Draw a radius that is from the center of the circle to one end of the chord.
- Label where the perpendicular radius to the chord intersect. Call it E.
- You should get something that looks like the diagram below. The only thing you have to do is put in the point E which is the midpoint of CB.
Givens
AC = 13 inches Given
CB = 24 inches Given
CE = 12 inches Construction and property of a midpoint.
So what we have now is a right triangle (ACE) with the right angle at E.
What we seek is AE
Formula
AC^2 = CE^2 + AE^2
13^2 = 12^2 + AE^2
169 = 144 + AE^2 Subtract 144 from both sides.
169 - 144 = 144-144 + AE^2 Combine
25 = AE^2 Take the square root of both sides
√25 = √AE^2
5 = AE
Answer
The 24 inch chord is 5 inches from the center of the circle.
Answer: D) the last one
Step-by-step explanation: