Let's begin by listing the first few multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 38, 40, 44. So, between 1 and 37 there are 9 such multiples: {4, 8, 12, 16, 20, 24, 28, 32, 36}. Note that 4 divided into 36 is 9.
Let's experiment by modifying the given problem a bit, for the purpose of discovering any pattern that may exist:
<span>How many multiples of 4 are there in {n; 37< n <101}? We could list and then count them: {40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100}; there are 16 such multiples in that particular interval. Try subtracting 40 from 100; we get 60. Dividing 60 by 4, we get 15, which is 1 less than 16. So it seems that if we subtract 40 from 1000 and divide the result by 4, and then add 1, we get the number of multiples of 4 between 37 and 1001:
1000 -40 ------- 960
Dividing this by 4, we get 240. Adding 1, we get 241.
Finally, subtract 9 from 241: We get 232.
There are 232 multiples of 4 between 37 and 1001.
Can you think of a more straightforward method of determining this number? </span>
<span>1) We are given that PA = PB, so PA ≅ PB by the definition of the radius.
</span>When you draw a perpendicular to a segment AB, you take the compass, point it at A and draw an arc of size AB, then you do the same pointing the compass on B. Point P will be one of the intersections of those two arcs. Therefore PA and PB correspond to the radii of the arcs, which were taken both equal to AB, therefore they are congruent.
2) We know that angles PCA and PCB are right angles by the definition of perpendicular.
Perpendicularity is the relation between two lines that meet at a right angle. Since we know that PC is perpendicular to AB by construction, ∠PCA and ∠PCB are right angles.
3) PC ≅ PC by the reflexive property congruence.
The reflexive property congruence states that any shape is congruent to itself.
4) So, triangle ACP is congruent to triangle BCP by HL, and AC ≅ BC by CPCTC (corresponding parts of congruent triangles are congruent).
CPCTC states that if two triangles are congruent, then all of the corresponding sides and angles are congruent. Since ΔACP ≡ ΔBCP, then the corresponding sides AC and BC are congruent.
5) Since PC is perpendicular to and bisects AB, P is on the perpendicular bisector of AB by the definition of the perpendicular bisector.
<span>The perpendicular bisector of a segment is a line that cuts the segment into two equal parts (bisector) and that forms with the segment a right angle (perpendicular). Any point on the perpendicular bisector has the same distance from the segment's extremities. PC has exactly the characteristics of a perpendicular bisector of AB. </span>
According to the graph, it can be seen that a student has four hours of sleep as the minimum number of hours of sleep; two students have six hours of sleep, four students have six and a half hours of sleep, four have seven hours of sleep, three have seven and a half hours of sleep, five have eight hours of sleep, and one has eight and a half hours of sleep as maximum hours of sleep. Therefore, it can be affirmed that the statement that the difference between the maximum amount and the minimum number of hours is two and a half hours is false because between four hours and eight and a half hours there are four and a half hours of difference. So, the correct answer is False.