<h3><u>Answer;</u></h3>
Period = 1/17 seconds
<h3><u>Explanation;</u></h3>
- Wavelength is related to period by the expression:
<em>speed = wavelength / period
</em>
- If we are given the speed, then we can easily calculate the period at the wavelength of 20 m.
<em>Given the speed of sound wave as 340 m/s </em>
<em>Period = Wavelength/ speed</em>
<em> = 20 m/340 m/s</em>
<em> </em><u><em>= 1/17 seconds</em></u>
Answer:
λ = 596 nm.
Explanation:
Fringe width = λ D / d
λ is wave length , D is screen distance and d is slit separation.
Putting the values
1.62 x 10⁻² =( λ x 5.3 ) / .195 x 10⁻³

λ = 596 nm.
Answer:
ω = 1.83 rad/s clockwise
Explanation:
We are given:
I1 = 3.0kg.m2
ω1 = -5.4rad/s (clockwise being negative)
I2 = 1.3kg.m2
ω2 = 6.4rad/s (counterclockwise being positive)
By conservation of the momentum:
I1 * ω1 + I2 * ω2 = (I1 + I2) * ω
Solving for ω:

Since it is negative, the direction is clockwise.
I’m am a mother no drama !!!!
Boom
Answer:
a) 4.2m/s
b) 5.0m/s
Explanation:
This problem is solved using the principle of conservation of linear momentum which states that in a closed system of colliding bodies, the sum of the total momenta before collision is equal to the sum of the total momenta after collision.
The problem is also an illustration of elastic collision where there is no loss in kinetic energy.
Equation (1) is a mathematical representation of the the principle of conservation of linear momentum for two colliding bodies of masses
and
whose respective velocities before collision are
and
;

where
and
are their respective velocities after collision.
Given;

Note that
=0 because the second mass
was at rest before the collision.
Also, since the two masses are equal, we can say that
so that equation (1) is reduced as follows;

m cancels out of both sides of equation (2), and we obtain the following;

a) When
, we obtain the following by equation(3)

b) As
stops moving
, therefore,
