Answer:
Robotic arms used aboard the ISS are now used in delicate surgeries on Earth.
Explanation:
The ISS allows users to address hardware product development gaps, advanced manufacturing, and emerging technology proliferation. Microgravity-enabled material production capabilities and advanced manufacturing facilities are demonstrating scientific and commercial merit for Earth benefit
Statements that are true as regards exposure control plan and its updating are;
<em>Updates must have the reflection of changes in tasks as well in procedures.</em>
<em>Updates must reflect changes in positions that affect occupational exposure.</em>
<em>Updates must have the cost of PPE that is needed and necessary to reduce exposure</em>
An exposure control plan can be regarded as the framework for compliance between the employer and the workers.
- This framework give room for the employer to creates a written plan that will help in protecting their workers from bloodborne pathogens.
- This plan gives hope to workers in term of protection when working with their Employer.
- There are some elements that is associated with Exposure Control Plan, and theses are;
- Health hazards as well as risk that is attributed to each product in the worksite.
- Statement of purpose.
- procedures and practices in a written form
- Responsibilities from the Manager, CEO, designated resources and employer.
Therefore, exposure control plan is avenue to protect workers from bloodborne pathogens.
brainly.com/question/1203927?referrer=searchResults
Answer:
The work done on the canister by the 5.0 N force during this time is
54.06 Joules.
Explanation:
Let the initial kinetic energy of the canister be
KE₁ =
=
= 19.44 J in the x direction
Let the the final kinetic energy of the canister be
KE₂ =
=
= 73.5 J in the y direction
Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final
= 73.5 J - 19.44 J = 54.06 J
Answer:
HOPE IT HELPS YOU!!!
Explanation:
Mark FadedGirl25 as brainliest
The distance covered by an object accelerating from rest is
D = (1/2) · (acceleration) · (time)² .
In this particular case, 'acceleration' is 9.8 m/s² ... due to gravity.
D = (1/2) · (9.8 m/s²) · (1.67 s)²
D = (4.9 m/s²) · (2.789 s²)
D = 13.67 meters