When NAD becomes NADH, it is being reduced and gaining chemical energy.
Nicotinamide adenine dinucleotide (NAD), a coenzyme, can exist in two forms, NAD⁺ (oxidized) and NADH (reduced form).
Electrons and protons released in catabolism reactions are attached to NAD⁺. The conversion of NAD⁺ to NADH is important reaction for production of ATP during the cellular respiration.
Reduction is lowering oxidation number because element, ion or compound gain electrons.
Chemical equation for reaction of reduction of NAD⁺ (see picture below):
NAD⁺ + 2e⁻ + H⁺ → NADH
Nicotinamide adenine dinucleotide (NAD) is made of two nucleosides joined by pyrophosphate.
More about reduction :brainly.com/question/25334331
#SPJ4
<span>1,3-cylohexadiene i synthesized starting from cyclohexane in following 4 steps.
1) Free Radical Substitution Rxn: Halogenation of cyclohexane in the presence of UV yield chlorocyclohexane.
2) Elimination Rxn: Dehydrohalogenation of chlorocyclohexane yields cyclohexene.
3) Halogenation of Cyclohexene (
Electrophillic Addition Rxn) gives 1,2-dihalocyclohexane.
4) Elemination Rxn: When dibromocyclohexane is treated with KOH and heated it gives 1,3-cyclohexadiene as shown below,</span>
Specialized periodicals in which scientists publish the results of their works are called scientific journals.
<h3 />
In educational publishing, a scientific journal is a periodical book intended to similarly the progress of technology, typically by way of reporting new studies.
Journal articles may include original research, re-analyses of studies, opinions of literature in a selected place, proposals of new but untested theories, or opinion pieces.
These scientific journals include the following.
- original articles,
- case reports,
- technical notes,
- pictorial essays,
- reviews,
- commentaries
- editorials.
Learn more about scientific journals here brainly.com/question/14443228
#SPJ10
Answer:- 9.4 minutes.
Solution:- Radioactive decay obeys first order reaction kinetics and the equation used to solve this type of problems is:

where, k is decay constant and t is the time.
is the initial amount of the radioactive substance and N is the remaining amount.
Since the value of decay constant is not given, so we need to calculate it first from given half life by using the formula:

where
stands for half life.
Given half life is 3.0 minutes.
So, 

Let's plug in the values in the first order reaction equation and solve it for t.

It could also be written as:



k = 9.4 min
So, the radioactive substance would take 9.4 minutes to decay from 40.0 grams to 4.5 grams.