Answer: The atoms of the solid products are tightly packed whereas those in gas are loose.
Explanation:
Atoms in the solid structure are linked to each other by strong force of attraction and they collectively form an three-dimensional structure. The binding of the atoms form the shape of the solid product. The gas exhibit free atoms in it. The atoms are not linked to one another by strong force of attraction. The atoms as a part of gas have higher energy as those present in the solid products. So, the atoms of the gas wander freely as compared to those in the solid products.
Answer: The moon's gravitational pull generates something called the tidal force. The tidal force causes Earth—and its water—to bulge out on the side closest to the moon and the side farthest from the moon. These bulges of water are high tides
Explanation:
I believe the correct answer is the second option. There will be two cobalt atoms in one formula unit of cobalt (III) oxide. It has a chemical formula of Co2O3. This compound is does not naturally occur so it is being synthesized. It is mostly used as bleaching agent.
The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>