Answer:
Explanation:
a ) It is given that bomb was at rest initially , so , its momentum before the explosion was zero.
b ) We shall apply law of conservation of momentum along x and y direction separately because no external force acts on the bomb.
If v be the velocity of the third part along a direction making angle θ
with x axis ,
x component of v = vcosθ
So momentum along x axis after explosion of third part = mv cosθ
= 10 v cosθ
Momentum along x of first part = - 5 x 42 m/s
momentum of second part along x direction =0
total momentum along x direction before explosion = total momentum along x direction after explosion
0 = - 5 x 42 + 10 v cosθ
v cosθ = 21
Similarly
total momentum along y direction before explosion = total momentum along y direction after explosion
0 = - 5 x 38 + 10 v sinθ
v sinθ= 21
squaring and and then adding the above equation
v² cos²θ +v² sin²θ = 21² +19²
v² = 441 + 361
v = 28.31 m/s
Tanθ = 21 / 19
θ = 48°
The distance is 1760 km
The speed is 960 km hour I.e 960 divide by 60 = 16 km/minute
hence in time 1 hour 50 minutes I.e 110 minutes
distance travelled is 110 - 16 = 1760 km
<u>Answer:</u>
For 1: The correct option is Option C.
For 3: The final velocity of the opponent is 1m/s
<u>Explanation: </u>
During collision, the energy and momentum remains conserved. The equation for the conservation of momentum follows:
...(1)
where,
are the mass, initial velocity and final velocity of first object
are the mass, initial velocity and final velocity of second object
<u>For 1:</u>
We are Given:

Putting values in equation 1, we get:

Hence, the correct answer is Option C.
Impulse is defined as the product of force applied on an object and time taken by the object.
Mathematically,

where,
F = force applied on the object
t = time taken
J = impulse on that object
Impulse depends only on the force and time taken by the object and not dependent on the surface which is stopping the object.
Hence, the impulse remains the same.
Let the speed in right direction be positive and left direction be negative.
We are Given:

Putting values in equation 1, we get:

Hence, the final velocity of the opponent is 1m/s and has moved backwards to its direction of the initial velocity.
30 30 30 30 30 30 30 30 30 30