Answer:
2.36 μ H
Explanation:
Given,
Number of turns= 90
diameter = 1.3 cm = 0.013 m
unscratched length = 57 cm = 0.57 m
Area, A = π r²
= π x 0.0065² = 1.32 x 10⁻⁴ m²
we know,


L = 2.36 μ H
Hence, the inductance of the unstretched cord is equal to 2.36 μ H
Answer:
well people find a hole on the ground and they can see water and that theu build the well around them but the answer is. C
Answer:
0.231 N
Explanation:
To get from rest to angular speed of 6.37 rad/s within 9.87s, the angular acceleration of the rod must be

If the rod is rotating about a perpendicular axis at one of its end, then it's momentum inertia must be:

According to Newton 2nd law, the torque required to exert on this rod to achieve such angular acceleration is

So the force acting on the other end to generate this torque mush be:

Answer:
<em>1.11m</em>
Explanation:
From the diagram we are given the following forces;
F1 = 24.3N
F3 = 30N
Since the sum of upward forces is equal to that of downward force, then;
F2 = F1 + F3
F2 = 24.3N + 30N
F2 = 54.3N
Required
Distance between B and C
First we need to get Length of AC
Take moment about A
Anticlockwise moment = F3 cos20 * AC
Anticlockwise moment = 30ACcos 20
Clockwise moment = 1.2 * F2
Clockwise moment = 1.2(54.3) = 65.16Nm
Applying the principle of moment;
Sum of ACW moment = Sum of CW moments
30ACcos 20 = 65.16
AC = 65.16/30cos20
AC = 65.16/28.19
AC = 2.31m
Get the distance BC
AC = AB + BC
BC = AC-AB
BC = 2.31 - 1.2
BC = 1.11m
Hence the separation between B and C is 1.11m
<em>Note that the force F1 got in (a) was the value used in the calculation.</em>
<em></em>
Answer:
28.1 m/s
Explanation:
= Initial velocity of the fish = 1.52 m/s
y = Height of the bird = 40 m
= Acceleration in y axis = 
= Initial velocity in y axis = 0


The final velocity in x direction will remain the same as the initial velocity as there is no acceleration in the x direction 
Resultant velocity is given by

The fish is moving at a velocity of 28.1 m/s when it hits the water.