Answer:
Explanation:
Centripetal acceleration is given by:

Thus, centripetal acceleration is inversely proportional to the radius. Thus, when radius will double, the centripetal acceleration will be halved.
Answer:
Bile helps in the digestion of fats
Answer:
No
Explanation:
For infinite speed to be achevied, one must have no sink of energy to spend. The source of entropy in this example, is the tires hitting the surface, producing heat and friction. Not to mention that you'd still need fuel to start the car, and an infinite tunnel or track, which would be impossible and speed up to process of energy loss through entropy quicker.
Answer:
t₁ > t₂
Explanation:
A coin is dropped in a lift. It takes time t₁ to reach the floor when lift is stationary. It takes time t₂ when lift is moving up with constant acceleration. Then t₁ > t₂, t₁ = t₂, t₁ >> t₂ , t₂ > t₁
Solution:
Newton's law of motion is given by:
s = ut + (1/2)gt²;
where s is the the distance covered, u is initial velocity, g is the acceleration due to gravity and t is the time taken.
u = 0 m/s, t₁ is the time to reach ground when the light is stationary and t₂ is the time to reach ground when the lift is moving with a constant acceleration a.
hence:
When stationary:

Hence t₂ < t₁, this means that t₁ > t₂.
Answer:
v = K √(E / ρ)
Explanation:
Modulus of elasticity has units of N/m², or kg/m/s².
Density has units of kg/m³.
Velocity has units of m/s.
If we divide modulus of elasticity by density, we can eliminate kg:
E / ρ = [kg/m/s²] / [kg/m³]
E / ρ = [m²/s²]
Taking the square root gets us units of velocity:
√(E / ρ) = [m/s]
Multiply by the constant K:
v = K √(E / ρ)