Ron would need to run 3 miles
The answer is 6.524. Hope this helps! :D
We want to find the mean of two elements in a set, given that we know the other elements of the set and the mean of the whole set.
The answer is: -490
-----------------------------
For a set with N elements {x₁, x₂, ..., xₙ} the mean is given by:
![M = \frac{x_1 + x_2 + ... + x_n}{N}](https://tex.z-dn.net/?f=M%20%3D%20%5Cfrac%7Bx_1%20%2B%20x_2%20%2B%20...%20%2B%20x_n%7D%7BN%7D)
Here we know that:
- The mean of the set is 0.
- The set has 1000 elements.
- 998 of these elements are ones, the other two are A and B.
We want to find the mean of the values of A and B.
First, we can start by writing the equation for the mean:
![\frac{1 + 1 + 1 + ... A + B}{1000} = 0](https://tex.z-dn.net/?f=%5Cfrac%7B1%20%2B%201%20%2B%201%20%2B%20...%20A%20%2B%20B%7D%7B1000%7D%20%20%3D%200)
We can rewrite this as:
![1 + 1 + 1 +... + A + B = 0](https://tex.z-dn.net/?f=1%20%2B%201%20%2B%201%20%2B...%20%2B%20A%20%2B%20B%20%3D%200)
And we have 998 ones, then:
![1 + 1 + 1 +... + A + B = 998 + A + B = 0\\\\B = - 998 - A](https://tex.z-dn.net/?f=1%20%2B%201%20%2B%201%20%2B...%20%2B%20A%20%2B%20B%20%3D%20998%20%2B%20A%20%2B%20B%20%3D%200%5C%5C%5C%5CB%20%3D%20-%20998%20-%20A)
Now we have B isolated.
With this, the mean of A and B can be written as:
![\frac{A + B}{2} = \frac{A - 980 - A}{2} = -490](https://tex.z-dn.net/?f=%5Cfrac%7BA%20%2B%20B%7D%7B2%7D%20%20%3D%20%5Cfrac%7BA%20-%20980%20-%20A%7D%7B2%7D%20%3D%20-490)
So we can conclude that the mean of the other two numbers is -490.
If you want to learn more, you can read:
brainly.com/question/22871228
Its called a reflection when it is reflected across an axis or a point