Solar energy, wind energy, and hydroelectric energy are all renewable energy
288.51 N is the magnitude of the force that the beam exerts on the hi.nge.
Given
Mass 0f beam = 40 Kg
The horizontal component of the force exerted by the hi_nge on the beam is 86.62 N
Angle between the beam and cable is = 90°
Angle between beam and the horizontal component = 31°
As the system of the beam, hi_nge and cable are in equilibrium.
The magnitude of the force that the beam exerts on the hi_nge can be calculated by -
F =The horizontal component of force + the vertical component of force
F = 86.62 N + 40 × 9.8 × sin 31°
F =86.62 N + 201.89 N
F = 288.51 N
Hence, the magnitude of the force that the beam exerts on the hi_nge is 288.51 N.
Learn more about components of forces here brainly.com/question/26446720
#SPJ1
Answer:
The work function ϕ of the metal = 53.4196 x 10⁻¹⁶ J
Explanation:
When light is incident on a photoelectric material like metal, photoelectrons are emitted from the surface of the metal. This process is called photoelectric effect.
The relationship between the maximum kinetic energy (
) of the photoelectrons to the frequency of the absorbed photons (f) and the threshold frequency (f₀) of the photoemissive metal surface is:
= h(f − f₀)
= hf - hf₀
E is the energy of the absorbed photons: E = hf
ϕ is the work function of the surface: ϕ = hf₀
= E - ϕ
Frequency f = 8.12×10¹⁸ Hz
Maximum kinetic energy
= 4.16×10⁻¹⁷ J
Speed of light c = 3 x 10⁸ m/s
Planck's constant h = 6.63 × 10⁻³⁴ Js
E = hf = 6.63 × 10⁻³⁴ x 8.12×10¹⁸
E = 53.8356 x 10⁻¹⁶ J
from
= E - ϕ ;
ϕ = E - 
ϕ = 53.8356 x 10⁻¹⁶ - 4.16×10⁻¹⁷
ϕ = 53.4196 x 10⁻¹⁶ J
The work function of the metal ϕ = 53.4196 x 10⁻¹⁶ J
Cold.
Example: A frozen object (such as ice) is solid. Its molecules move extremely slow because the object itself isn't moving... It's like the skin on your bod... Imagine that wiggling and writhing on your bones. It's not like a gas, that can move freely and has no specific form or hold.
So again, the answer is Cold.