I think it’s Malleability
Answer:
C) 200 m/s
Explanation:
The sound travels a total distance of 360 m in 0.03 minutes.
v = (360 m) / (0.03 min × 60 s/min)
v = 200 m/s
Explanation:
Below is an attachment containing the solution.
Answer:
Explanation:
We shall use Ampere's circuital law to find magnetic field at required point.
The point is outside the circumference of two given wires so whole current will be accounted for .
Ampere's circuital law
B = ∫ Bdl = μ₀ I
line integral will be over circular path of radius r = 41 cm .
Total current I = 5A -3A = 2A .
∫ Bdl = μ₀ I
2π r B = μ₀ I
2π x .41 B = 4π x 10⁻⁷ x 2
B = 2 x 10⁻⁷ x 2 / .41
= 9.75 x 10⁻⁷ T . It will be along - ve Y - direction.
The speed of the spring when it is released is 3.5 m/s.
The given parameters:
- <em>Mass of the block, m = 2.5 kg</em>
- <em>Spring constant, k = 56 N/m</em>
- <em>Extension of the spring, x = 0.75 m</em>
The speed of the spring when it is released is calculated by applying the principle of conservation of energy as follows;

Thus, the speed of the spring when it is released is 3.5 m/s.
Learn more about conservation of energy here: brainly.com/question/166559