Negative energy by catching it. Changes the force and movement of the baseball. Loses energy. Kinetic energy
The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts
To find work, you use the equation: W = Force X Distance X Cos (0 degrees)
Following the Law of Conservation of Energy, energy cannot be destroyed nor created.
So you would do 75 N x 10m x Cos (0 degrees)= 750 J
Is there any other information given? I don't think you can solve this without a time
Answer:
Potential energy only
Explanation:
at the top of its swing the pendulum stops moving , (therefore it has no KINETIC energy) thus all of the energy is stored as potential energy.