Answer:
28.5 m/s
18.22 m/s
Explanation:
h = 20 m, R = 20 m, theta = 53 degree
Let the speed of throwing is u and the speed with which it strikes the ground is v.
Horizontal distance, R = horizontal velocity x time
Let t be the time taken
20 = u Cos 53 x t
u t = 20/0.6 = 33.33 ..... (1)
Now use second equation of motion in vertical direction
h = u Sin 53 t - 1/2 g t^2
20 = 33.33 x 0.8 - 4.9 t^2 (ut = 33.33 from equation 1)
t = 1.17 s
Put in equation (1)
u = 33.33 / 1.17 = 28.5 m/s
Let v be the velocity just before striking the ground
vx = u Cos 53 = 28.5 x 0.6 = 17.15 m/s
vy = uSin 53 - 9.8 x 1.17
vy = 28.5 x 0.8 - 16.66
vy = 6.14 m/s
v^2 = vx^2 + vy^2 = 17.15^2 + 6.14^2
v = 18.22 m/s
Answer:
This is because using a long handled requires less force to the center of gravity and makes it easier to rotate than a short handled spanner
8.16m is the required height, a 5kg stone need to be raised.
One sort of potential energy is gravitational potential energy, which is equal to the product of the object's mass (m), the gravitational acceleration (g), and the object's height (h) as measured in relation to the ground's surface (the body).
We obtain the formula by considering the work done in raising a mass m through a height h.
Work in elevating mass m through height h is equal to force times distance.
The force must be greater than the mass m's weight, hence F = mg.
Work done = mgh = gravitational potential energy
Energy = Mass of the object × gravitational acceleration × height.
Mass of the stone = 5kg
Equating ;
∴ 400 J = 5 kg × 9.8 m/s² × height
Height = 8.16 m
Therefore, 8.16m is the required height.
Learn more about energy here:
brainly.com/question/1242059
#SPJ1
<h2>
Answer: A</h2>
Explanation because the distance covered is equal time intervals is the same or equal.