Answer:
The time it takes the proton to return to the horizontal plane is 7.83 X10⁻⁷ s
Explanation:
From Newton's second law, F = mg and also from coulomb's law F= Eq
Dividing both equations by mass;
F/m = Eq/m = mg/m, then
g = Eq/m --------equation 1
Again, in a projectile motion, the time of flight (T) is given as
T = (2usinθ/g) ---------equation 2
Substitute in the value of g into equation 2

Charge of proton = 1.6 X 10⁻¹⁹ C
Mass of proton = 1.67 X 10⁻²⁷ kg
E is given as 400 N/C, u = 3.0 × 10⁴ m/s and θ = 30°
Solving for T;

T = 7.83 X10⁻⁷ s
Transverse, I think. I may be wrong.
Answer:
a and b are the correct answers
Explanation:
Answer:
force for start moving is 7.49 N
force for moving constant velocity 2.25 N
Explanation:
given data
mass = 7.65 kg
kinetic coefficient of friction = 0.030
static coefficient of friction = 0.10
solution
we get here first weight of block of ice that is
weight of block of ice = mass × g
weight of block of ice = 7.65 × 9.8 = 74.97 N
so here Ff = Fa
so for force for start moving is
Fa = weight × static coefficient of friction
Fa = 74.97 × 0.10
Fa = 7.49 N
and
force for moving constant velocity is
Fa = weight × kinetic coefficient of friction
Fa = 74.97 × 0.030
Fa = 2.25 N
Answer:
157.9 kg
Explanation:
Density: This can be defined as the ratio of the mass of a body and it's volume.
The S.I unit of density is kg/m³.
From the question,
Density = Mass/volume
D = m/v............................ Equation 1
Where D = Density of gold, m = mass of gold, v = volume of gold.
make m the subject of the equation
m = Dv.................... Equation 2
Since the gold is a cube,
v = l³................... Equation 3
Where l = length of the gold cube.
Substitute equation 3 into equation 2
m = Dl³............... Equation 4
Given: D = 19300 kg/m³, l = 0.2015 m
Substitute into equation 4
m = 19300(0.2015)³
m = 157.9 kg.