1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
2 years ago
9

The volume of a sphere is 2254 pi m^3 what is the surface area of the sphere to the nearest 10th

Mathematics
1 answer:
Advocard [28]2 years ago
8 0
By definition. The volume of the sphere is:
 V = (4/3) * (pi) * (r ^ 3)
 Where,
 r: radius of the sphere.
 Substituting values:
 2254 pi = (4/3) * (pi) * (r ^ 3)
 Clearing the radio we have:
 r ^ 3 = (3/4) * (2254)
 r = ((3/4) * (2254)) ^ (1/3)
 r = 11.91255883
 Then, the surface area is:
 A = 2 * pi * r ^ 2
 Substituting values:
 A = 2 * 3.14 * (11.91255883) ^ 2
 A = 891.6 m ^ 2
 Answer:
 
The surface area of the sphere is:
 
b. 891.6 m ^ 2
You might be interested in
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
If 3 pounds of apples cost $3.85, how much will 18<br> pounds of apples cost?
Mekhanik [1.2K]

Answer: $23.10

Step-by-step explanation:

18/3 = 6

3.85 x 6 = $23.10

8 0
2 years ago
Please help no links please
pashok25 [27]
Can you comment to me because it won’t allow me to send it on here it sends me a copy but you won’t be able to click on it

explain
5 0
2 years ago
Read 2 more answers
Please help me with this
sergij07 [2.7K]

Answer:

x=8

Step-by-step explanation:

The ratio of a side of PQRS to the corresponding side in TUVW. is 6:4=3:2.

The ratio of RS:VW=3:2. RS=12, and VW=x. 12:x=3:2. 3 multiplied by 4 is 12, so 2 multiplied by 4 is x. So, the makes x=8.

3 0
3 years ago
I NEED HELP ASAP!!<br><br> 4(5)(-2)=?
vova2212 [387]
So, in an easier way to say it
4 × 5 × -2

You would start by doing 
4 × 5 = 20
Then,
 20 × -2 = 40 

So your answer is -40

Hope I helped ♥
5 0
3 years ago
Other questions:
  • flora volunteered to drive 210 miles to pick up her sister from summer camp. she stopped 140 miles into the trip to eat lunch. w
    8·1 answer
  • What is the slope of the line above the y axis?
    15·1 answer
  • Use the grid to create a model to solve the percent problem. 12 is 60% of what number? Enter your answer in the box
    8·2 answers
  • Why is 743 a prime number
    7·1 answer
  • What number is 73% of 215?
    11·2 answers
  • What is the polygon called?
    10·1 answer
  • I need to rent a car for my forthcoming trip. Rent-N-Go charges $21 per day plus 15 cents per mile. Super Rentals Plus charges $
    14·1 answer
  • Quadrilateral ABCD is inscribed in circle E. the m&lt;A=152 find m&lt;C​
    6·1 answer
  • Two types of tickets are sold to a play. Floor
    7·1 answer
  • Plz Help!!!<br> Will give Brainliest!!!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!