Answer:
-2.1
Step-by-step explanation:
Answer:
10 terms
Step-by-step explanation:
equate the sum formula to 55 and solve for n
n(n + 1) = 55 ( multiply both sides by 2 to clear the fraction )
n(n + 1) = 110 ← distribute parenthesis on left side
n² + n = 110 ( subtract 110 from both sides )
n² + n - 110 = 0 ← in standard form
Consider the factors of the constant term (- 110) which sum to give the coefficient of the n- term (+ 1)
the factors are + 11 and - 10 , since
11 × - 10 = - 110 and 11 - 10 = + 1 , then
(n + 11)(n - 10) = 0 ← in factored form
equate each factor to zero and solve for n
n + 11 = 0 ⇒ n = - 11
n - 10 = 0 ⇒ n = 10
However, n > 0 , then n = 10
number of terms which sum to 55 is 10
Answer:
<h3>stay safe healthy and happy<u>.</u></h3>
Answer:
x=1 y = -1/2
(1,-1/2)
Step-by-step explanation:
7x-2y=8
5x+2y=4
I would use elimination since we have 2y in one equation and -2y in the other
7x-2y=8
5x+2y=4
--------------------
12x = 12
Divide each side by 12
12x/12 = 12/12
x =1
The substitute back into equation 2
5(1) +2y = 4
5 +2y = 4
Subtract 5
5-5+2y = 4-5
2y = -1
Divide by 2
2y/2 = -1/2
y = -1/2
9514 1404 393
Answer:
$2.50
Step-by-step explanation:
The question asks for the total cost of a notebook and pen together. We don't need to find their individual costs in order to answer the question.
Sometimes we get bored solving systems of equations in the usual ways. For this question, let's try this.
The first equation has one more notebook than pens. The second equation has 4 more notebooks than pens. If we subtract 4 times the first equation from the second, we should have equal numbers of notebooks and pens.
(8n +4p) -4(3n +2p) = (16.00) -4(6.50)
-4n -4p = -10.00 . . . . . . . . . . . simplify
n + p = -10.00/-4 = 2.50 . . . . divide by the coefficient of (n+p)
The total cost for one notebook and one pen is $2.50.
__
<em>Additional comment</em>
The first equation has 1 more notebook than 2 (n+p) combinations, telling us that a notebook costs $6.50 -2(2.50) = $1.50. Then the pen is $2.50 -1.50 = $1.00.
One could solve for the costs of a notebook (n) and a pen (p) individually, then add them together to answer the question. We judge that to be more work.