Answer:
709 g
Step-by-step explanation:
a) Balanced equation
Normally, we would need a balanced chemical equation.
However, we can get by with a partial equation, as log as carbon atoms are balanced.
We know we will need an equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 30.07 236.74
C₂H₆ + … ⟶ C₂Cl₆ + …
m/g: 90.0
(i) Calculate the moles of C₂H₆
n = 90.0 g C₂H₆ × (1 mol C₂H₆ /30.07 g C₂H₆)
= 2.993 mol C₂H₆
(ii) Calculate the moles of C₂Cl₆
The molar ratio is (1 mol C₂Cl₆/1 mol C₂H₆)
n = 2.993 mol C₂H₆ × (1 mol C₂Cl₆/1 mol C₂H₆)
= 2.993 mol C₂Cl₆
(iii) Calculate the mass of C₂Cl₆
m = 2.993 mol C₂Cl₆ × (236.74 g C₂Cl₆/1 mol C₂Cl₆)
m = 709 g C₂Cl₆
The reaction produces 709 g C₂Cl₆.
Low pH = high acidity.
HF has a very low pH, so when added to a solution, it will lower the pH of the solution and therefore make it more acidic. So the answer should be B.
Sodium ions and sulfate ions shall be present in the solution.
Answer:
11 1/2 cm I think lol
Explanation:
it is in between the 11 and 12 mark
Answer:
Kp = 41.53
Kc = 1.01
Explanation:
To calculate the equilibrium constant in terms of pressure, what we simply do is to use the equilibrium pressure raised to the power of the number of moles. What we are saying in essence is this:
Kp = [NOCl]^2/[NO]^2[Cl]
Kp= [0.25]^2/[0.174][0.093]^2 = 41.53
Kp = Kc (RT)^Dn
Hence, Kc = Kp/[RT]^(delta n )^-1
n = sum of the number of moles of products minus the sum of the number of moles of reactants= 2-3 = -1 in this case
Kc = 41.53/(0.0821 * 500)^1
Kc = 1.01