Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction, we can set up the heat of reaction per mole of gasoline as shown below:

Now, since the total heat is obtained by multiplying the moles and heat of reaction, we can calculate the moles as shown below:

Finally, since the molar mass of gasoline is 114.22 g/mol, we can easily calculate the mass as follows:

Best regards!
The volume of 0.555M KNO3 solution would contain 12.5 g of solute iss 223 mL.
<h3>What is the relationship between mass of solute and concentration of solution?</h3>
The mass of solute in a given volume of solution is related by the formula below:
- Molarity = mass/(molar mass * volume)
Therefore, volume of solution is given by:
Volume = Mass /molarity * molar mass
Molar mass of KNO₃ = 101 g/mol
Volume = 12.5/(0.555 * 101)
Volume = 0.223 L or 223 mL
In conclusion, the volume of the solution is obtained from the molarity of solution as well as mass and molar mass of solute.
Learn more about molarity and volume at: brainly.com/question/26873446
#SPJ1
The answer is B- 124 degrees
The first law of thermodynamics characterises the two types of energy transfer, as heat and as thermodynamic. The final internal (thermal) energy of the system is 1,500 J.
<h3>What is internal energy?</h3>
The energy present in a system itself for conducting reactions is called internal energy.
Given,
- Heat entering system (Q) = 700 J
- Work done by the piston (W) = 400
- Initial energy
= 1200 J
According to the <u>first law of thermodynamics</u>:

Substituting values in the above equation:

Therefore, option D. 1500 J is the final energy.
Learn more about internal energy here:
brainly.com/question/2602565
Answer:
The rate decreases
Explanation:
When we dissolve a gas in a water, the process is exothermic. This implies that heat is evolved upon dissolution of a gas in water.
Recall from Le Chateliers principle that for exothermic reactions, an increase in temperature favours the reverse reaction. The implication of these is that when the temperature of the gas is increased, less gas will dissolve in water.
Hence increase in temperature decreases the rate of solubility of a gas in water.