To know the acidity of a
solution, we calculate the pH value. The formula for pH is given as:
<span>pH = - log [H+] where H+ must be in Molar</span>
We are given that H+ = 3.25 × 10-2 M
Therefore the pH is:
pH = - log [3.25 × 10-2]
pH = 1.488
Since pH is way below 7, therefore the solution
is acidic.
To find for the OH- concentration, we must
remember that the product of H+ and OH- is equivalent to 10^-14. Therefore,
[H+]*[OH-] = 10^-14 <span>
</span>[OH-] = 10^-14 / [H+]
[OH-] = 10^-14 / 3.25 × 10-2
[OH-] = 3.08 × 10-13 M
Answers:
Acidic
[OH-] = 3.08 <span>× 10-13 M</span>
Answer:
for what I can see in the picture the volume is 155
Explanation:
Answer:
Mole Fraction (H₂O) = 0.6303
Mole Fraction (C₂H₅OH) = 0.3697
Explanation:
(Step 1)
Calculate the mole value of each substance using their molar masses.
Molar Mass (H₂O): 2(1.008 g/mol) + 15.998 g/mol
Molar Mass (H₂O): 18.014 g/mol
200.0 g H₂O 1 mole
--------------------- x ------------------ = 11.10 moles H₂O
18.014 g
Molar Mass (C₂H₅OH): 2(12.011 g/mol) + 6(1.008 g/mol) + 15.998 g/mol
Molar Mass (C₂H₅OH): 46.068 g/mol
300.0 g C₂H₅OH 1 mole
---------------------------- x -------------------- = 6.512 moles C₂H₅OH
46.068 g
(Step 2)
Using the mole fraction ratio, calculate the mole fraction of each substance.
moles solute
Mole Fraction = ------------------------------------------------
moles solute + moles solvent
11.10 moles H₂O
Mole Fraction = -------------------------------------------------------------
11.10 moles H₂O + 6.512 moles C₂H₅OH
Mole Fraction (H₂O) = 0.6303
6.512 moles C₂H₅OH
Mole Fraction = -------------------------------------------------------------
11.10 moles H₂O + 6.512 moles C₂H₅OH
Mole Fraction (C₂H₅OH) = 0.3697
Answer:B. The sodium ion has a smaller radius than the atom.
Explanation:
Because size of cation is less than neutral atom