For a polynomial of the form ax^2+bx+c rewrite the middle term as a sum of two terms whose product is a⋅c=5⋅4=20 and whose sum is b=12.
<u>Factor 12 out of 12x.</u>
5x^2+12(x)+4
<u>Rewrite 12 as 2 plus 10</u>
5x^2+(2+10)x+4
Apply the distributive property.
5x^2+2x+10x+4
Factor out the greatest common factor from each group.
Group the first two terms and the last two terms.
(5x^2+2x)+10x+4
Factor out the greatest common factor (GCF) from each group.
x(5x+2)+2(5x+2)
Factor the polynomial by factoring out the greatest common factor, 5x+25x+2.
(5x+2)(x+2)
Answer:
(2 decimal places)
Step-by-step explanation:
Quadratic Formula: 
-----------------------------------------------

Plug in values:

First value of x:
(2 decimal places)
Second value of x:
(2 decimal places)
Answer:
131.3 miles
Step-by-step explanation:
The two cars are moving from different directions. The total distance between the two cars = 118 miles + 256 miles = 374 miles.
Let us assume that the two cars meet at point O, let the distance between car c and O be d₁, the distance between car d and point O be d₂, hence:
d₁ + d₂ = 374 miles (1)
Let speed of car d be x mph, therefore speed of car c = 2x mph (twice of car d). If it take the cars t hours to meet at the same point, hence
For car c:
2x = d₁/t
t = d₁ / 2x
For car d;
x = d₂/t
t = d₂/ x
Since it takes both cars the same time to meet at the same point, therefore:
d₁/2x = d₂ / x
d₁ = 2d₂
d₁ - 2d₂ = 0 (2)
Solving equation 1 and 2 simultaneously gives d₁ = 249.3 miles, d₂ = 124.7 miles
Therefore the distance from point of meet to Boston = 249.3 - 118 = 131.3 miles
You can use a calculator online you know? It is 21.3