Answer:
Vf = 3.67 [m/s]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity [m/s]
Vi = initial velocity = 4.3 [m/s]
a = acceleration or desacceleration = 0.5 [m/s²]
x = distance = 5 [m]
Note: The negative sign in the above equation means that the velocity of the ball is decreasing (desacceleration).
Now replacing:
Vf² = (4.3)² - (2*0.5*5)
Vf² = 18.49 - 5
Vf² = 13.49
using the square root, we have.
Vf = 3.67 [m/s]
We want to find the work done and power exerted, let’s start with work first.
We know that the equation for work is: W = F * D. We need to find the force which we can find by using: F = M * A.
Mass: 300kg
Acceleration (using equation from photo): 1.25 m/s^2
(The equation says x but can be used with y values)
If you are confused about how I found the acceleration; I plugged in 2.5 for the final y value, 0 for the initial y value, 0 for the initial velocity and 4 for t squared.
To solve, for acceleration it’s a matter of simple algebra. You can subtract the initial y position and the initial velocity from the final y position because they are 0. This leaves you with 2.5 m = 1/2a * t^2, from here I multiplied 2.5 by 2 to get rid of the 1/2. Now I have 5 = a * t^2. T^2 is just 2 squared, so four. Simply divide 5 by 4, and boom, you get 1.25 m/s^2.
Force = 300 kg * 1.25 m/s^2 = 375 Newtons
So, work = 500 N * 2.5 m = 1000 Joules
Power: W/t
So, Power = 1000 J / 2 seconds = 500 Watts
Hope this helps!
Answer
a) charge of the sodium ion is,
q = n e
q = 2.68 x 10¹⁶ x 1.6 x 10⁻¹⁹
q = 4.288 x 10⁻³ C
charge of the chlorine ion is,
q' = n e
q' = 3.92 x 10¹⁶ x 1.6 x 10⁻¹⁹
q' = 6.272 x 10⁻³ C
the current



b) positive ion moves toward negative electrode hence direction of will be in the direction toward negative electrode.
Answer:
335°C
Explanation:
Heat gained or lost is:
q = m C ΔT
where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.
Heat gained by the water = heat lost by the copper
mw Cw ΔTw = mc Cc ΔTc
The water and copper reach the same final temperature, so:
mw Cw (T - Tw) = mc Cc (Tc - T)
Given:
mw = 390 g
Cw = 4.186 J/g/°C
Tw = 22.6°C
mc = 248 g
Cc = 0.386 J/g/°C
T = 39.9°C
Find: Tc
(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)
Tc = 335
Answer:
Aluminium
Explanation:
Aluminium has the least resistance since It has 3 free electrons per atom. Its resistivity is low compared to other metals provided in the choices (gold, nichrome, tungsten). Low resistivity of metals means a high conductance of the metal referred to.