1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Thepotemich [5.8K]
3 years ago
14

As light shines from air to another medium, i = 42.0°. The light bends toward the normal and refracts at 38.0° What is

Physics
1 answer:
eduard3 years ago
8 0

Answer:

1.09

Explanation:

You might be interested in
A flat sheet of paper of area 0.365 m2 is oriented so that the normal to the sheet is at an angle of 60 ∘ to a uniform electric
andriy [413]

Answer:

A.) 3.65 N*m²/C B) No C) 0º D) 90º

Explanation:

A) The electric flux, when the electric field is uniform across a gausssian surface, can be calculated as the dot product of the electric field vector, and the vector representing the area of the surface (normal to the surface and directed outward it by convention), as follows:

Flux = E*A*cos φ

where E = 20 N/C, A = 0.365 m², φ = 60º.

Replacing by the values, we can get the value of the electric flux, as follows:

Flux = 20 N/C* 0.365 m²*0.5 = 3.65 N*m²/C

B) While the area remains constant, and doesn't change orientation, the value of the flux will be the same, regardless the shape of the sheet.

C) When the normal to the sheet and the electric field are parallel each other, the surface will intercept the maximum number of field lines, i.e. the flux will be directly E*A*cos 0º = E*A (maximum value possible).

D) When the electric field is tangent to the surface, this means that no field lines will be intercepted by the sheet, so the flux is zero.

In this case, φ = 90º, cos φ = 0

⇒ E*A*cos 90º = E*A*0 = 0

5 0
3 years ago
Two charged point-like objects are located on the x-axis. The point-like object with charge q1 = 4.60 µC is located at x1 = 1.25
mylen [45]

Answer:

a) the total electric potential is 2282000 V

b) the total electric potential (in V) at the point with coordinates (0, 1.50 cm) is 1330769.23 V

Explanation:

Given the data in the question and as illustrated in the image below;

a) Determine the total electric potential (in V) at the origin.

We know that; electric potential due to multiple charges is equal to sum of electric potentials due to individual charges

so

Electric potential at p in the diagram 1 below is;

Vp = V1 + V2

Vp = kq1/r1 + kq2/r2

we know that; Coulomb constant, k = 9 × 10⁹ C

q1 = 4.60 uC = 4.60 × 10⁻⁶ C

r1 = 1.25 cm = 0.0125 m

q2 = -2.06 uC = -2.06 × 10⁻⁶ C

location x2 = −1.80 cm; so r2 = 1.80 cm = 0.018 m

so we substitute

Vp = ( 9 × 10⁹ × 4.60 × 10⁻⁶/ 0.0125 ) + ( 9 × 10⁹ × -2.06 × 10⁻⁶ / 0.018 )

Vp = (3312000) + ( -1030000 )

Vp = 3312000 -1030000

Vp = 2282000 V

Therefore, the total electric potential is 2282000 V

b)

the total electric potential (in V) at the point with coordinates (0, 1.50 cm).

As illustrated in the second image;

r1² = 0.015² + 0.0125²

r1 = √[ 0.015² + 0.0125² ]

r1 = √0.00038125

r1 = 0.0195

Also

r2² = 0.015² + 0.018²

r2 = √[ 0.015² + 0.018² ]

r2 = √0.000549

r2 = 0.0234

Now, Electric Potential at P in the second image below will be;

Vp = V1 + V2

Vp = kq1/r1 + kq2/r2

we substitute

Vp = ( 9 × 10⁹ × 4.60 × 10⁻⁶/ 0.0195 ) + ( 9 × 10⁹ × -2.06 × 10⁻⁶ / 0.0234 )

Vp = 2123076.923 + ( -762962.962 )

Vp = 2123076.923 -792307.692

Vp =  1330769.23 V

Therefore, the total electric potential (in V) at the point with coordinates (0, 1.50 cm) is 1330769.23 V

4 0
3 years ago
When the forces acting on a particle are resolved into cylindrical components, friction forces always act in the
Aleksandr [31]

Answer:

Tangential

Explanation: This is a kind of force which act on a moving body in such a way that it is curved in the direction of the path of the body. This implies that when the velocity of the object is positive, the acceleration will be negative.

7 0
3 years ago
GIVING BRAINLIEST PLEASE HELP ME!!!
kumpel [21]

Answer:

I'm Pretty sure the answer your looking for is C

4 0
3 years ago
If a machine increases force it must apply the force over a long distance? True or false
Eduardwww [97]

Answer: The machine must apply the force over a shorter distance. That's because a machine doesn't change the amount of work and work equals force times distance. Therefore, if force increases, distance must decrease

FALSE

HOPE THIS HELPS

4 0
3 years ago
Other questions:
  • One student did an experiment with two unknown minerals, Mineral 1 and Mineral 2. The hardness scale shown below was used for th
    9·1 answer
  • What will a spring scale read for the weight of a 57.0-kg woman in an elevator that moves upward with constant speed of 5.0 m/s
    7·1 answer
  • Acoustics is the study of sound. In large rooms, such as theaters where large orchestras perform, cushioned seats and carpeted f
    13·1 answer
  • When an object has its motion changed, the cause is generally __________.
    7·2 answers
  • What is the kinetic energy of a vehicle that has a mass of 3,500 kg and is moving at 40 m/s
    9·1 answer
  • A long, vertical pipe (radius R) filled with an incompressible Newtonian fluid, is initially capped at its lower end. At some in
    13·1 answer
  • A student is creating a model of a concave lens. The diagram shows her incomplete model.
    7·1 answer
  • Describe the pattern you see in the chart PLEASE HURRY IS URGENT
    6·1 answer
  • If it takes the watermelon 1 second to reach the ground when it is thrown downward at 10 m/s, how tall are the stands?
    12·1 answer
  • Which are bones of the middle ear that are responsible for vibrating so sound waves can be passed along?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!