Answer:
Therefore, the correct options are;
-P(fatigue) = 0.44
= 0.533
--P(drug and fatigue) = 0.32
P(drug)·P(fatigue) = 0.264
Step-by-step explanation:
Here we have that for dependent events,
![P(A \, and \, B)= P(A)\times P(B\left | \right A )](https://tex.z-dn.net/?f=P%28A%20%5C%2C%20and%20%5C%2C%20B%29%3D%20P%28A%29%5Ctimes%20%20P%28B%5Cleft%20%7C%20%20%5Cright%20A%20%29)
From the options, we have;
= 0.533
P(drug) = 0.6
P(drug and fatigue) = 0.32
Therefore
P(drug and fatigue) = P(drug)×
= 0.6 × 0.533 = 0.3198 ≈ 0.32 = P(drug and fatigue)
Therefore, the correct options are;
-P(fatigue) = 0.44
= 0.533
--P(drug and fatigue) = 0.32
P(drug)·P(fatigue) = 0.264
Since P(fatigue) = 0.44 ∴ P(drug) = 0.264/0.44 = 0.6.