1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
2 years ago
14

Please help me with this!!!

Mathematics
1 answer:
Nostrana [21]2 years ago
5 0

Answer:

Below in bold

Step-by-step explanation:

I AM ASSUMING that CDEF is a Rhombus.

If it is than triangle DEG is right-angled.

so 2x + 18 + 5x + 2 = 90.

7x = 90 - 20 = 70

x = 7.

So m < CDF  = 5x + 2

= 5(10) + 2

= 52 degrees.

m < DCE = 2(10) + 18 = 38 degrees.

The diagonal bisects < DCF so m < ECF = 38 degrees.

So m < DCF = 2 * 38 = 76 degrees.

Opposite angles of a rhombus are equal so m < DEF = 76 degrees.

You might be interested in
The Empirical Rule The following data represent the length of eruption for a random sample of eruptions at the Old Faithful geys
ad-work [718]

Answer:

(a) Sample Standard Deviation approximately to the nearest whole number = 6

(b) The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is.

(c) The percentage of eruptions that last between 92 and 116 seconds using the empirical rule is 95%

(d) The actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) The percentage of eruptions that last less than 98 seconds using the empirical rule is 16%

(f) The actual percentage of eruptions that last less than 98 seconds is 15.866%

Step-by-step explanation:

(a) Determine the sample standard deviation length of eruption.

Express your answer rounded to the nearest whole number.

Step 1

We find the Mean.

Mean = Sum of Terms/Number of Terms

= 90+ 90+ 92+94+ 95+99+99+100+100, 101+ 101+ 101+101+ 102+102+ 102+103+103+ 103+103+103+ 104+ 104+104+105+105+105+ 106+106+107+108+108+108 + 109+ 109+ 110+ 110+110+110+ 110+ 111+ 113+ 116+120/44

= 4582/44

= 104.1363636

Step 2

Sample Standard deviation = √(x - Mean)²/n - 1

=√( 90 - 104.1363636)²+ (90-104.1363636)² + (92 -104.1363636)² ..........)/44 - 1

= √(199.836777 + 199.836777 + 147.2913224+ 102.7458678+ 83.47314049+ 26.3822314+ 26.3822314+ 17.10950413+17.10950413+ 9.836776857+ 9.836776857, 9.836776857+9.836776857+ 4.564049585+ 4.564049585+ 4.564049585+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 0.01859504133+ 0.01859504133+ 0.01859504133+ 0.7458677685+ 0.7458677685+ 0.7458677685+ 3.473140497+ 3.473140497+ 8.200413225+ 14.92768595+ 14.92768595+ 14.92768595+ 23.65495868+ 23.65495868+ 34.38223141+ 34.38223141+34.38223141+ 34.38223141+ 34.38223141+47.10950414+ 78.56404959+ 140.7458677+ 251.6549586) /43

= √1679.181818/43

= √39.05073996

= 6.249059126

Approximately to the nearest whole number:

Mean = 104

Standard deviation = 6

(b) On the basis of the histogram drawn in Section 3.1, Problem 28, comment on the appropriateness of using the Empirical Rule to make any general statements about the length of eruptions.

The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is .

(c) Use the Empirical Rule to determine the percentage of eruptions that last between 92 and 116 seconds.

The empirical rule formula states that:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

Mean = 104, Standard deviation = 6

For 68% μ - σ = 104 - 6 = 98, μ + σ = 104 + 6 = 110

For 95% μ – 2σ = 104 -2(6) = 104 - 12 = 92

μ + 2σ = 104 +2(6) = 104 + 12 = 116

Therefore, the percentage of eruptions that last between 92 and 116 seconds is 95%

(d) Determine the actual percentage of eruptions that last between 92 and 116 seconds, inclusive.

We solve for this using z score formula

The formula for calculating a z-score is is z = (x-μ)/σ

where x is the raw score, μ is the population mean, and σ is the population standard deviation.

Mean = 104, Standard deviation = 6

For x = 92

z = 92 - 104/6

= -2

Probability value from Z-Table:

P(x = 92) = P(z = -2) = 0.02275

For x = 116

z = 92 - 116/6

= 2

Probability value from Z-Table:

P(x = 116) = P(z = 2) = 0.97725

The actual percentage of eruptions that last between 92 and 116 seconds

= P(x = 116) - P(x = 92)

= 0.97725 - 0.02275

= 0.9545

Converting to percentage = 0.9545 × 100

= 95.45%

Therefore, the actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) Use the Empirical Rule to determine the percentage of eruptions that last less than 98 seconds

The empirical rule formula:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

For 68% μ - σ = 104 - 6 = 98,

Therefore, 68% of eruptions that last for 98 seconds.

For less than 98 seconds which is the Left hand side of the distribution, it is calculated as

= 100 - 68/2

= 32/2

= 16%

Therefore, the percentage of eruptions that last less than 98 seconds is 16%

(f) Determine the actual percentage of eruptions that last less than 98 seconds.

The formula for calculating a z-score is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation.

For x = 98

Z score = x - μ/σ

= 98 - 104/6

= -1

Probability value from Z-Table:

P(x ≤ 98) = P(x < 98) = 0.15866

Converting to percentage =

0.15866 × 100

= 15.866%

Therefore, the actual percentage of eruptions that last less than 98 seconds is 15.866%

4 0
2 years ago
What proportional segment lengths verify that BC¯¯¯¯¯∥DE¯¯¯¯¯ ? Fill in the boxes to correctly complete the proportion. $$ = $$
Alborosie

answer is

4/6 then 3.2

took the test

5 0
3 years ago
Read 2 more answers
Will mark brainliest to best answer!!<br><br> geometry question
jeka94
Divide the number & Multiply
4 0
3 years ago
Assume a gasoline price of $3.55 per gallon. What is the gasoline cost for a 2000 mile trip if you drive at an average speed of
saul85 [17]

Answer:

The driving time at 54 miles per hour is 37.04 hours.

Step-by-step explanation:

8 0
3 years ago
A potato sorting machine produces 5 pounds of potatoes an average for the standard aviation is a half a pound assuming the weigh
mixas84 [53]
For a 95% confidence interval, the corresponding z-score is 1.96. Therefore the deviation will by 1.96*0.5 lbs = 0.98 lbs. Therefore, the confidence interval will be (5 - 0.98, 5 + 0.98), which is (4.02, 5.98). The weight range is from 4.02 lbs to 5.98 lbs.
5 0
3 years ago
Other questions:
  • A base angle of an isosceles triangle measures 30, and the length of one of the legs is 12. What is the length of the altitude d
    10·1 answer
  • Vanessa kicked a soccer ball laying on the ground. It was in the air for 4 seconds before it hit the ground. While the soccer ba
    14·1 answer
  • Write and solve a word problem that can be modeled by addition of two negative integers?
    5·2 answers
  • Which of the following is the estimated sum of fifty-five, sixty, and sixty-five using compatible numbers?
    7·1 answer
  • To increase an amount by 17.5% what single multiplier would you use?
    12·2 answers
  • An automobile manufacturer is preparing a shipment of cars and trucks on a cargo ship that can carry 21600 tons.
    10·2 answers
  • Sarah is cutting ribbons for a pep rally. The length of each ribbon needs to be 3.57 inches if she needs 1,000 ribbons what is t
    13·1 answer
  • 7th GRADE MATH hellp​
    11·2 answers
  • PLEASE HELP !!
    13·1 answer
  • Triangle ABC is congruent to triangle A′′B′′C′′ . Which sequence of transformations could have been used to transform triangle A
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!